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Preface

If you want to improve your understanding of algebra, then this book is for you. It can 
supplement standard texts at the middle-school and high-school levels. It can also serve as a 
self-teaching or home-schooling supplement. The essential prerequisite is a solid background 
in arithmetic. It will help if you’ve had some pre-algebra as well.

This book contains three major sections. Part 1 involves numbers, sets, arithmetic opera-
tions, and basic equations. Part 2 is devoted to first-degree equations, relations, functions, and 
systems of linear equations. Part 3 deals with quadratic, cubic, and higher-degree equations, 
and introduces you to logarithms, exponentials, and systems of nonlinear equations.

Chapters 1 through 9, 11 through 19, and 21 through 29 end with practice exercises. You 
may (and should) refer to the text as you solve these problems. Worked-out solutions appear 
in Apps. A, B, and C. Often, these solutions do not represent the only way a problem can be 
figured out. Feel free to try alternatives!

Chapters 10, 20, and 30 contain question-and-answer sets that finish up Parts 1, 2, 
and 3, respectively. These chapters will help you review the material. A multiple-choice final 
exam concludes the course. Don’t refer to the text while taking the exam. The questions in the 
exam are more general (and less time consuming) than the practice exercises at the ends of the 
chapters. The final exam is designed to test your grasp of the concepts, not to see how well you 
can execute calculations. The correct answers are listed in App. D.

In my opinion, middle-school and high-school students aren’t sufficiently challenged in 
mathematics these days. I think that most textbooks place too much importance on “churning 
out answers,” and often fail to explain how and why you get those answers. I wrote this book 
to address these problems. The presentation sometimes gets theoretical, but I’ve tried to intro-
duce the language gently so you won’t get lost in a wilderness of jargon. Many of the examples 
and problems are easy, some take work, and a few are designed to make you think hard.

If you complete one chapter per week, you’ll get through this course in a school year. But don’t hurry. 
Proceed at your own pace. When you’ve finished this book, I highly recommend McGraw-Hill’s Algebra 
Demystified and College Algebra Demystified, both by Rhonda Huettenmueller, for further study.

Stan Gibilisco

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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3

CHAPTER

1

Counting Methods

Algebra is a science of numbers. To work with numbers, you need symbols to represent them. 
The way these symbols relate to actual quantities is called a numeration system. In this chap-
ter, you’ll learn about numeration systems for whole-unit quantities such as 4, 8, 1,509, or 
1,580,675. Fractions, negative numbers, and more exotic numbers will come up later.

Fingers and Sticks
Throughout history, most cultures developed numeration systems based on the number 
of fingers and thumbs on human hands. The word digit derives from the Latin word for 
“finger.” This is no accident. Fingers are convenient for counting, at least when the numbers 
are small!

Number or numeral?

The words number and numeral are often used as if they mean the same thing. But they’re 
different. A number is an abstraction. You can’t see or feel a number. A numeral is a tangible 
object, or a group of objects, that represents a number. Suppose you buy a loaf of bread cut 
into eighteen slices. You can consider the whole sliced-up loaf as a numeral that represents the 
number eighteen, and each slice as a digit in that numeral. You can’t eat the number eighteen, 
but you can eat the bread.

In this chapter, when we write about numbers as quantities, let’s write them out fully in 
words, like eighteen or forty-five or three hundred twenty-one. When we want to write down 
a numeral, it’s all right to put down 18 or 45 or 321, but we have to be careful about this sort 
of thing. When you see a large quantity written out in full here, keep this in mind: It means 
we’re dealing with a number, not a numeral.

Figuring with fingers

Imagine it’s the afternoon of the twenty-fourth day of July. You have a doctor’s appointment 
for the afternoon of the sixth of August. How many days away is your appointment?

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



A calculator won’t work very well to solve this problem. Try it and see! You can’t get the 
right answer by any straightforward arithmetic operation on twenty-four and six. If you attack 
this problem as I would, you’ll count out loud starting with tomorrow, July twenty-fifth 
(under your breath): “twenty-five, twenty-six, twenty-seven, twenty-eight, twenty-nine, thirty, 
thirty-one, one, two, three, four, five, six!” While jabbering away, I would use my fingers to 
count along or make “hash marks” on a piece of paper (Fig. 1-1). You might use a calendar and 
point to the days one at a time as you count them out. However you do it, you’ll come up with 
thirteen days if you get it right. But be careful! This sort of problem is easy to mess up.

Don’t be embarrassed if you find yourself figuring out simple problems like this using 
your fingers or other convenient objects. You’re making sure that you get the right answer 
by using numerals to represent the numbers. Numerals are tailor-made for solving number 
problems because they make abstract things easy to envision.

Toothpicks on the table

Everyone has used “hash marks” to tally up small numbers. You can represent one item by 
a single mark and five items by four marks with a long slash. You might use objects such as 
toothpicks to create numerals in a system that expands on this idea, as shown in Fig. 1-2. You 
can represent ten by making a capital letter T with two toothpicks. You can represent fifty 
by using three toothpicks to make a capital letter F. You can represent a hundred by making 
a capital letter H with three toothpicks. This lets you express rather large numbers such as 
seventy-four or two hundred fifty-three without having to buy several boxes of toothpicks 
and spend a lot of time laying them down.

In this system, any particular arrangement of sticks is a numeral. You can keep going this 
way, running an F and H together to create a symbol that represents five hundred. You can 
run a T and an H together to make a symbol that represents a thousand. How about ten 
thousand? You could stick another T onto the left-hand end of the symbol for a thousand, or 
you could run two letters H together to indicate that it’s a hundred hundred! Use your imagi-
nation. That’s what mathematicians did when they invented numeration systems in centuries 
long past.

4 Counting Methods

(24) 25 26 27 28 29 30 31

1 2 3 4 5 6

July

August

Figure 1- 1   How many days pass from the afternoon of July 24 
until the afternoon of August 6? You can make marks 
on a piece of paper and then count them to figure out 
the answer.



Are you confused?
If the toothpick numeral system puzzles you, don’t feel bad. It’s awkward. It’s impractical for expressing 
gigantic numbers. People aren’t used to counting in blocks of five or fifty or five hundred. It’s easier to go 
straight from blocks of one to blocks of ten, and then from ten to a hundred, then to a thousand, then to 
ten thousand, and so on. But using blocks of five, fifty, five hundred and so on, in addition to the tradi-
tional multiples of ten, conserves toothpicks.

Here’s a challenge!
Using toothpick numerals represent the number seven hundred seventy-seven in two different ways. Make 
sure one of your arrangements is the most “elegant” possible way to represent seven hundred seventy-
seven, meaning that it uses the smallest possible number of toothpicks.

Solution
Figure 1-3 shows two ways you can represent this number. In order to represent five hundred, you build 
the F and the H together so they’re a single connected pattern of sticks. The arrangement on top is the 
most “elegant” possible numeral.
  You can represent seven hundred seventy-seven in more ways than just the two shown here. You can 
make numerals that are far more “inelegant” than the bottom arrangement. The worst possible approach 
is to lay down seven hundred seventy-seven toothpicks side-by-side.

Fingers and Sticks  5

1 5 10 10

50

100 253

74

Figure 1- 2   Toothpick-numeral equivalents 
of some numbers. In this system, 
most numbers can be represented 
by more than one numeral. But 
there is always a “best numeral” 
that uses the smallest possible 
number of toothpicks.



Roman Numerals
The toothpick numeration system just described bears a resemblance to another system that 
was actually used in much of the world until a few centuries ago: the Roman numeration 
system, more often called Roman numerals.

Basic symbols

In Roman numerals, a quantity of one is represented by a capital letter I. A quantity of five 
is represented by a capital V. A quantity of ten is denoted as a capital X, fifty is a capital L, a 
hundred is a capital C, five hundred is a capital D, and a thousand is usually represented by a 
capital M. (Sometimes K is used instead.)

So far, this looks like a refinement of the toothpick numeration scheme. But there are 
some subtle differences. You don’t always write the symbols in straightforward order from left 
to right, as you lay down the sticks in the toothpick system. There are exceptions, intended 
to save symbols.

Arranging the symbols

The people who designed the Roman system did not like to put down more than three identi-
cal symbols in a row. Instead of putting four identical symbols one after another, the writer 
would jump up to the next higher symbol and then put the next lower one to its left, indicat-
ing that the smaller quantity should be taken away from the larger.

For example, instead of IIII (four ones) to represent four, you would write IV (five with 
one taken away). Instead of XXXX (four tens) to represent forty, you’d write XL (fifty with 
ten taken away). Instead of MDXXXX to represent one thousand nine hundred, you’d write 
MCM (a thousand and then another thousand with a hundred taken away).

What about zero?

By now you must be thinking, “No wonder people got away from Roman numerals, let alone 
hash marks. They’re confusing!” But that’s not the only trouble with the Roman numeral 
system or the toothpick numeral system we made up earlier. There’s a more serious issue. 
Neither of these schemes give you any way to express the quantity zero. This might not seem 
important at first thought. Why make a big fuss over a symbol that represents nothing?

Sometimes the best way to see why something is important is to try to get along with-
out it. When you start adding and subtracting, and especially when you start multiplying 

6 Counting Methods

Figure 1- 3   Two different ways of expressing seven hundred 
seventy-seven in toothpick numerals. The top 
method is preferred because it is more “elegant.”



and dividing, it’s almost impossible to get along without zero. In a computer, the numeral 0 is 
one of only two possible digits (the other being 1) for building large numerals. In accounting, 
the presence or absence of a single 0 on a piece of paper can represent the difference between 
the price of a car and the price of a house.

Are you confused?
Let’s write down all the counting numbers from one to twenty-one as Roman numerals. This will give you 
a “feel” for how the symbols are arranged to represent adding-on or taking-away of quantities.

The first three are easy: the symbol I means one, II means two, and III means three. Then for four, we 
write IV, meaning that one is taken away from five. Proceeding, V means five, VI means six, VII means 
seven, and VIII means eight. To represent nine, we write IX, meaning that one is taken away from ten. Then 
going on, X means ten, XI means eleven, XII means twelve, and XIII means thirteen. Now for fourteen, we 
write XIV, which means ten with four more added on. Then XV means fifteen, XVI means sixteen, XVII 
means seventeen, and XVIII means eighteen. For nineteen, we write XIX, which means ten with nine more 
added on. Continuing, we have XX that stands for twenty, and XXI to represent twenty-one.

Here’s a challenge!
Write down some Roman numerals in a table as follows. In the first column, put down the equivalents of 
one to nine in steps of one. In a second column, put down the equivalents of ten to ninety in steps of ten. 
In a third column, put down the equivalents of one hundred to nine hundred in steps of one hundred. In 
a fourth column, put down the equivalents of nine hundred ten to nine hundred ninety in steps of ten. 
In a fifth column, put down the equivalents of nine hundred ninety-one to nine hundred ninety-nine in 
steps of one.

Solution
Refer to Table 1-1. The first column is farthest to the left, and the fifth column is farthest to the right. For 
increasing values in each column, read downward. “Normal” numerals are shown along with their Roman 
equivalents for clarification.

Roman Numerals  7

Table 1-1.  Some examples of Roman numerals. From this progression, you should be 
able to see how the system works for fairly large numbers. You should also begin to 

understand why mathematicians abandoned this system centuries ago.

1 = I 10 = X 100 = C 910 = CMX 991 = CMXCI
2 = II 20 = XX 200 = CC 920 = CMXX 992 = CMXCII
3 = III 30 = XXX 300 = CCC 930 = CMXXX 993 = CMXCIII
4 = IV 40 = XL 400 = CD 940 = CMXL 994 = CMXCIV
5 = V 50 = L 500 = D 950 = CML 995 = CMXCV
6 = VI 60 = LX 600 = DC 960 = CMLX 996 = CMXCVI
7 = VII 70 = LXX 700 = DCC 970 = CMLXX 997 = CMXCVII
8 = VIII 80 = LXXX 800 = DCCC 980 = CMLXXX 998 = CMXCVIII
9 = IX 90 = XC 900 = CM 990 = CMXC 999 = CMXCIX



Hindu-Arabic Numerals
The numeration system we use today was invented in the seventh century by mathematicians 
in Southern Asia. During the next two or three hundred years, invaders from the Middle East 
picked it up. Good ideas have a way of catching on, even with invading armies! Eventually, 
most of the civilized world adopted the Hindu-Arabic numeration system. The “Hindu” part of 
the name comes from India, and the “Arabic” part from the Middle East. You will often hear 
this scheme called simply Arabic numerals.

The idea of “place”

In an Arabic numeral, every digit represents a quantity ranging from nothing to nine. These 
digits are the familiar 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The original Hindu inventors of the sys-
tem came up with an interesting way of expressing numbers larger than nine. They gave each 
digit more or less “weight” or value, depending on where it was written in relation to other 
digits in the same numeral. The idea was that every digit in a numeral should have ten times 
the value of the digit (if any) to its right. When building up the numeric representation for 
a large number, there would occasionally be no need for a digit in a particular place, but a 
definite need for one on either side of it. That’s where the digit 0 became useful. 

Zero as a “placeholder”

Figure 1-4 shows an example of a numeral that represents a large number. Note that the 
digit 0, also called a cipher, is just as important as any other digit. The quantity shown is 
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Figure 1- 4   In the Hindu-Arabic numeration system, large numbers are 
represented by building up numerals digit-by-digit from right 
to left, giving each succeeding digit ten times the value of the 
digit to its right.



seven hundred eight thousand sixty-five. (Some people would call it seven hundred and eight 
thousand and sixty-five.) It’s customary to place a comma or space after every third digit as 
you proceed from right to left in a multi-digit numeral like this. Once you get to a certain 
nonzero digit as you work your way from right to left, all the digits farther to the left are 
understood to be ciphers.

Every digit 0 “inside” a numeral serves as a placeholder, making it clear what the values of 
digits to its left should be. All those ciphers to the left of the last nonzero digit are insignificant 
in most situations, and it is unusual to see any of them written down. But once in a while you 
might find it helpful to insert one or more of them during a calculation.

Counting vs. whole numbers

Let’s make sure we understand the difference between a counting number and a whole number.
Usage varies depending on which text you happen to read. For our purposes, the counting 
numbers go as one, two, three, four, five, and so on. They can be defined with the Roman 
numeration system, and can also be defined with the toothpick system we “invented” here. 
We’ll define the whole numbers as zero, one, two, three, four, five, and so on. The only differ-
ence is whether we start at one or zero.

Names for some huge numbers

People who used Roman numerals hardly ever had to work with numbers much larger than a 
thousand. But in today’s scientific world, we deal with numbers that make a thousand seem 
tiny by comparison. Here are some of the names for numbers that are represented as a 1 fol-
lowed by multiples of three ciphers:

• The numeral 1 followed by three ciphers represents a thousand.
• The numeral 1 followed by six ciphers represents a million.
• The numeral 1 followed by nine ciphers represents a billion in the United States or a 

thousand million in England.
• The numeral 1 followed by twelve ciphers represents a trillion in the United States or 

a billion in England.
• The numeral 1 followed by fifteen ciphers represents a quadrillion.
• The numeral 1 followed by eighteen ciphers represents a quintillion
• The numeral 1 followed by twenty-one ciphers represents a sextillion.
• The numeral 1 followed by twenty-four ciphers represents a septillion.
• The numeral 1 followed by twenty-seven ciphers represents an octillion.
• The numeral 1 followed by thirty ciphers represents a nonillion.
• The numeral 1 followed by thirty-three ciphers represents a decillion.

How many numbers exist?

Envision an endless string of ciphers continuing off to the left in Fig. 1-4, all of them gray 
(just to remind you that each of them is there in theory, waiting to be changed to some other 
digit if you need to express a huge number). If you travel to the left of the digit 7 in Fig. 1-4 
by dozens of places, passing through 0 after 0, and then change one of those ciphers to the digit 1, 
the value of the represented number increases fantastically. This is an example of the power 
of the Arabic numeration system. A simple change in a numeral can make a big difference in 
the number it represents.

Hindu-Arabic Numerals  9



Another interesting property of the Arabic system is the fact that there is no limit to how 
large a numeral you can represent. Even if a string of digits is hundreds of miles long, even 
if it circles the earth, even if it goes from the earth to the moon—all you have to do is put a 
nonzero digit on the left or any digit on the right, and you get the representation for a larger 
whole number. Mathematicians use the term finite to describe anything that ends somewhere. 
No matter how large a whole number you want to express, the Arabic system lets you do it in 
a finite number of digits, and every single one of those digits is from the basic set of 0 through 9. 
You don’t have to keep inventing new symbols when numbers get arbitrarily large, as people 
did when the Roman system ruled.

Every imaginable number can be represented as an Arabic numeral that contains a finite 
number of digits. But there is no limit to the number of whole numbers you can denote that 
way. The group, or set, of all whole numbers is said to be infinite (not finite). That means there 
is no largest whole number.

What about “infinity”?

That elusive thing we call “infinity” is entirely different from any whole number, or any other 
sort of number people usually imagine. Mathematicians have found more than one type of 
“infinity”! Depending on the context, “infinity” can be represented by a lemniscate (∞), the 
small Greek letter omega (ω), or the capital Hebrew letter aleph (ℵ) with a numeric subscript 
that defines its “density.”

Are you confused?
Do you still wonder why the digit 0 is needed? After all, it represents “nothing.” Why bother with commas 
or spaces, either?

The quick answer to these questions is that the digit 0 and the comma (or space) are not actually 
needed in order to write numerals. The original inventors of the Arabic system put down a dot or a 
tiny circle instead of the full-size digit 0. But the cipher and the comma (or space) make errors a lot 
less likely.

Here’s a challenge!
Imagine a whole number represented by a certain string of digits in the Arabic system. How can you 
change the Arabic numeral to make the number a hundred times as large, no matter what the digits hap-
pen to be?

Solution
You can make any counting numeral stand for a number a hundred times as large by attaching two ciphers 
to its right-hand end. Try it with a few numerals and see. Don’t forget to include the commas where they 
belong! For example:

• 700 represents a quantity that’s a hundred times as large as 7.
• 1,400 represents a quantity that’s a hundred times as large as 14.
• 78,900 represents a quantity that’s a hundred times as large as 789.
• 1,400,000 represents a quantity that’s a hundred times as large as 14,000.
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The Counting Base
The radix or base of a numeration system is the number of single-digit symbols it has. The 
radix-ten system, also called base-ten or the decimal numeration system, therefore has ten sym-
bols, not counting commas (or decimal points, which we’ll get into later). But there are sys-
tems that use bases other than ten, and that have more or less than ten symbols to represent 
the digits. In this section we’ll look at some of them. You can get a good “mental workout” 
by playing with these! But they’re more than mind games. The base-two and base-sixteen 
systems, in particular, are commonly used in computer science.

A subtle distinction

Doesn’t 5 always mean the quantity five, 8 always mean the quantity eight, 10 always mean 
the quantity ten, and 16 always mean the quantity sixteen? Not necessarily! It’s true in base-
ten, but it is not necessarily true in other bases.

• Here are five pound signs: #####
• Here are eight pound signs: ########
• Here are ten pound signs: ##########
• Here are twelve pound signs: ############
• Here are sixteen pound signs: ################

In the base-eight numeration system, the total number of pound signs in the second line in 
the above list would be written as 10, the third line as 12, the fourth line as 14, and the last 
line as 20. In the base-sixteen numeration system, the total number of pound signs in the third 
line would be written as the letter A, the fourth line as C, and the last line as 10. (If you’re 
confused right now, just hold on a couple of minutes!)

When the expression for a number is a spelled-out word like “eighteen” or “forty-five” 
or “three hundred twenty-one,” we mean the actual quantity, regardless of the radix. If I 
write, “There are forty-five apples in this basket,” it is absolutely clear what I mean. But if 
I write, “There are 45 apples in this basket,” you must know the radix to be sure of how 
many apples the basket contains.

The decimal system

As you count upward from zero in the base-ten system, imagine proceeding clockwise around 
the face of a ten-hour clock as shown in Fig. 1-5A. When you have completed the first revolu-
tion, place a digit 1 to the left of the 0 and then go around again, keeping the 1 in the tens place. 
When you have completed the second revolution, change the tens digit to 2. You can keep going 
this way until you have completed the tenth revolution in which you have a 9 in the tens place. 
Then you must change the tens digit back to 0 and place a 1 in the hundreds place.

The Roman system

The Roman numeration scheme can be considered as a base-five system, at least when you 
start counting in it. Imagine a five-hour clock such as the one shown in Fig. 1-5B. You start 
with I (which stands for the number one), not with 0. You can complete one revolution and 
go through part of the second and the system works well.
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After the first revolution, you keep the V and then start adding symbols to its right: VI, 
VII, VIII. But when you get past VIII (which stands for the number eight), a problem occurs. 
The number nine is not represented as VIV, although technically it could be. It’s written as 
IX, but X is not on the clock face. The orderliness of this system falls apart before you even 
get twice around!

The octal system

Now imagine an eight-hour clock as shown in Fig. 1-5C. This shows how the base-eight or 
octal numeration system works. Use the same upward-counting scheme as you did with the 
ten-hour clock. But skip the digits 8 and 9. They do not exist in this system. When you finish 
the first revolution and are ready to start the second, place a 1 to the left of the digits shown, 
so you count

... 5, 6, 7, 10, 11, 12, ...

The string of three dots is called an ellipsis. It indicates that a pattern continues for a 
while, or perhaps even forever, saving you from having to do a lot of symbol scribbling. (You’ll 
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see this notation often in mathematics.) Continuing through the second revolution and into 
the third, you count

... 15, 16, 17, 20, 21, 22, ...

When you finish up the eighth revolution and enter the ninth, you count

... 75, 76, 77, 100, 101, 102, ...

The hexadecimal system

Let’s invent one more strange clock. This one has sixteen hours, as shown in Fig. 1-5D. You 
can see from this drawing how the base-sixteen or hexadecimal numeration system works. Use 
the same upward-counting scheme as you did with the ten-hour and eight-hour clocks. There 
are six new digits here, in addition to the digits in the base-ten system:

• A stands for ten
• B stands for eleven
• C stands for twelve
• D stands for thirteen
• E stands for fourteen
• F stands for fifteen

When you finish the first revolution and move into the second, place a l to the left of the 
digits shown. You count

... 8, 9, A, B, C, D, E, F, 10, 11, 12, 13, ...

Continuing through the second revolution and into the third, you count

... 18, 19, 1A, 1B, 1C, 1D, 1E, 1F, 20, 21, 22, 23, ...

When you complete the tenth revolution and move into the eleventh, you count

... 98, 99, 9A, 9B, 9C, 9D, 9E, 9F, A0, A1, A2, A3, ...

It goes on like this with B, C, D, E, and F in the sixteens place. Then you get to the end of the 
sixteenth revolution and move into the seventeenth, like this:

F8, F9, FA, FB, FC, FD, FE, FF, 100, 101, 102, 103, ...

Get the idea?
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The binary system

When engineers began to design electronic calculators and computers in the twentieth 
century, they wanted a way to count up to large numbers using only two digits, one to 
represent the “off ” condition of an electrical switch and the other to represent the “on” 
condition. These two states can also be represented as “false/true,” “no/yes,” “low/high,” 
“negative/positive,” or as the numerals 0 and 1. The result is a base-two or binary numera-
tion system.

Figure 1-6 shows how numerals in the binary system are put together. Instead of going 
up by multiples of ten, eight, or sixteen, you double the value of each digit as you move one 
place to the left. Numerals in the binary system are longer than numerals in the other systems, 
but binary numerals can be easily represented by the states of simple, high-speed electronic 
switches.

Every binary numeral has a unique equivalent in the decimal system, and vice versa. 
When you use a computer or calculator and punch in a series of decimal digits, the machine 
converts it into a binary numeral, performs whatever calculations or operations you demand, 
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Figure 1- 6   In the binary system, large numbers are represented by 
building up numerals digit-by-digit from right to left, giving 
each succeeding digit twice the value of the digit to its right. 
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converts the result back to a decimal numeral, and then displays that numeral for you. All of 
the conversions and calculations, all of the electronic switching actions and manipulations 
take place out of your sight, at incredible speed.

Are you confused?
Table 1-2 compares numerical values in the base-ten, base-two, base-eight, and base-sixteen systems from 
zero to sixty-four. From this table, you should be able to figure out (with a little bit of thought and scrib-
bling) how to convert larger decimal numerals to any of the other forms. Fortunately, there are plenty of 
computer programs and Web sites that will do such conversions for you up to millions, billions, and 
trillions!

Here’s a challenge!
Convert the hexadecimal numeral 2D03 to decimal form. Don’t use a computer or go on the Internet to 
find a Web site that will do it for you. Grind it out the long way.

Solution
To solve this, you need to know the place values. The digit farthest to the right represents a multiple of one 
(that is, just itself ). The next digit to the left represents a multiple of sixteen. After that comes a multiple 
of two hundred fifty-six (or sixteen times sixteen). Then comes a multiple of four thousand ninety-six 
(sixteen times two hundred fifty-six). Note that D represents thirteen. Thinking in the decimal system, 
you can figure it out as follows.

• In the ones place you have 3, so you start out with that
• In the sixteens place you have 0, so you must add zero times sixteen, which is zero, to what you 

have so far
• In the two hundred fifty-sixes place you have D which means thirteen, so you must add thirteen 

times two hundred fifty-six, which is three thousand three hundred twenty-eight, to what you 
have so far

• In the four thousand ninety-sixes place you have 2, so you must add two times four thousand 
ninety-six, which is eight thousand one hundred ninety-two, to what you have so far

Because there are no digits to the left of the 2, you are finished at this point. The final result, expressed as 
a sum in decimal numerals, is

3 + 0 + 3,328 + 8,192 = 11,523

One more thing ...

Are you getting tired of reading numbers as words? In the rest of this book, we’ll be dealing 
in the decimal system exclusively. So we’ll start using numerals to represent specific quantities 
most of the time. We won’t have to worry about ambiguity that could result from an alterna-
tive radix such as eight or sixteen. Numerals will also come in handy when numbers get large 
or “messy.” That’s one of the reasons why numerals were invented!
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Table 1-2.  The conventional (or decimal) numerals 0 through 64, 
along with their binary, octal, and hexadecimal equivalents.

Decimal Binary Octal Hexadecimal

 0 0 0 0
 1 1 1 1
 2 10 2 2
 3 11 3 3
 4 100 4 4
 5 101 5 5
 6 110 6 6
 7 111 7 7
 8 1000 10 8
 9 1001 11 9
 10 1010 12 A
 11 1011 13 B
 12 1100 14 C
 13 1101 15 D
 14 1110 16 E
 15 1111 17 F
 16 10000 20 10
 17 10001 21 11
 18 10010 22 12
 19 10011 23 13
 20 10100 24 14
 21 10101 25 15
 22 10110 26 16
 23 10111 27 17
 24 11000 30 18
 25 11001 31 19
 26 11010 32 1A
 27 11011 33 1B
 28 11100 34 1C
 29 11101 35 1D
 30 11110 36 1E
 31 11111 37 1F
 32 100000 40 20
 33 100001 41 21
 34 100010 42 22
 35 100011 43 23
 36 100100 44 24
 37 100101 45 25
 38 100110 46 26
 39 100111 47 27
 40 101000 50 28
 41 101001 51 29

(Continued )
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Table 1-2.  The conventional (or decimal) numerals 0 through 
64, along with their binary, octal, and hexadecimal equivalents. 

(Continued )

Decimal Binary Octal Hexadecimal

 42 101010 52 2A
 43 101011 53 2B
 44 101100 54 2C
 45 101101 55 2D
 46 101110 56 2E
 47 101111 57 2F
 48 110000 60 30
 49 110001 61 31
 50 110010 62 32
 51 110011 63 33
 52 110100 64 34
 53 110101 65 35
 54 110110 66 36
 55 110111 67 37
 56 111000 70 38
 57 111001 71 39
 58 111010 72 3A
 59 111011 73 3B
 60 111100 74 3C
 61 111101 75 3D
 62 111110 76 3E
 63 111111 77 3F
 64 1000000 100 40

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  How many days pass in a given place between noon local time on June 24 and noon 
local time of October 2 of any given year?

 2. Convert the following decimal numerals to Roman numerals.
(a) 200
(b) 201
(c) 209
(d) 210



 3. Convert the following Roman numerals to decimal numerals.
(a) MMXX
(b) MMXIX
(c) MMIX
(d) MMVI

 4.  Write down the number three hundred two trillion, seventy billion, one hundred forty-
nine million, six thousand, one hundred ten as a decimal numeral. Include commas 
where appropriate. Consider a billion as a thousand million, and a trillion as a million 
million.

 5.  How many ciphers could you add to the left of the digit 3 in the decimal numeral in 
the situation of Problem 4 without changing the value of the number it represents?

 6.  How can you make the number represented by the numeral in the answer to Problem 
4 ten times as large? A hundred times as large? A thousand times as large?

 7.  How can you write out the final answer to Problem 6 as a number in words rather than 
as a numeral in digits?

 8.  What numeral in the decimal (base-ten) system represents the same quantity that the 
binary numeral shown in Fig. 1-6 represents?

 9.  What numeral in the octal (base-eight) system represents the same quantity that the 
binary numeral shown in Fig. 1-6 represents?

 10.  What numeral in the hexadecimal (base-sixteen) decimal system represents the same 
quantity that the binary numeral shown in Fig. 1-6 represents?
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Before going farther with numbers, you should be familiar with sets and the symbols that 
describe their behavior. Sets are important in all branches of mathematics, including algebra. 
Put on your “abstract thinking cap”!

The Concept of a Set
A set is a collection or group of things called elements or members. An element of a set can be 
anything you can imagine, even another set. Sets, like numbers, are abstractions. If you have a 
set of a dozen eggs, you have something more than just the eggs. You have the fact that those 
eggs are all in the same group. Maybe you plan to use them to “rustle up” flapjacks for your 
ranch hands. Maybe your sister wants to try to hatch chickens from them.

To belong, or not to belong

If you want to call some entity x an element of set A, then you write

x ∈A

The “lazy pitchfork” symbol means “is an element of.” You can also say that x belongs to set 
A, or that x is in set A. If some other entity y is not an element of set A, then you can write 
that as

y ∉A

An element is a “smallest possible piece” that can exist in any set. You can’t break an element 
down into anything smaller and have it remain a legitimate element of the original set. This 
little notion becomes important whenever you have a set that contains another set as one of 
its elements.
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Listing the elements

When the elements of a set are listed, the list is enclosed in “curly brackets,” usually called 
braces. The order of the list does not matter. Repetition doesn’t matter either. The following 
sets are all the same:

{1, 2, 3}
{3, 2, 1}

{1, 3, 3, 2, 1}
{1, 2, 3, 1, 2, 3, 1, 2, 3, ...}

The ellipsis (string of three dots) means that the list goes on forever in the pattern shown. In 
this case, it’s around and around in an endless cycle.

Now look at this example of a set with five elements:

S = {2, 4, 6, 8, 10}

Are the elements of this set S meant to be numbers or numerals? That depends on the context. 
Usually, when you see a set with numerals in it like this, the author means to define the set 
containing the numbers that those numerals represent.

Here’s another example of a set with five elements:

P = {Mercury, Venus, Earth, Mars, Jupiter}

You’re entitled to assume that the elements of this set are the first five planets in our solar 
system, not the words representing them.

The empty set

A set can exist even if there are no elements in it. This is called the empty set or the null set. It 
can be symbolized by writing two braces facing each other with a space between, like this:

{ }

Another way to write it is to draw a circle and run a forward slash through it, like this:

∅

Let’s use the circle-slash symbol in the rest of this chapter, and anywhere else in this book the 
null set happens to come up.

You might ask, “How can a set have no elements? That would be like a club with no mem-
bers!” Well, so be it, then! If all the members of the Pingoville Ping-Pong Club quit today and 
no new members join, the club still exists if it has a charter and by laws. The set of members 
of the Pingoville Ping-Pong Club might be empty, but it’s a legitimate set as long as someone 
says the club exists.

Finite or infinite?

Sets can be categorized as either finite or infinite. When a set is finite, you can name all of its 
elements if you have enough time. This includes the null set. You can say “This set has no 
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elements,” and you’ve named all the elements of the null set. When a set is infinite, you can’t 
name all of its elements, no matter how much time you have.

Even if a set is infinite, you might be able to write an “implied list” that reveals exactly 
what all of its elements are. Consider this:

W = {0, 1, 2, 3, 4, 5, ...}

This is the set of whole numbers as it is usually defined in mathematics. You know whether or 
not something is an element of set W, even if it is not shown above, and even if you could not 
reach it if you started to scribble down the list right now and kept at it for days. You can tell 
right away which of the following numbers are elements of W, and which are not:

12

1/2

23

100/3

78,883,505

356.75

90,120,801,000,000,000

−65,457,333

The first, third, fifth, and seventh numbers are elements of W, but the second, fourth, sixth, 
and eighth numbers are not.

Some infinite sets cannot be totally defined by means of any list, even an “implied list”! 
You’ll learn about this type of set in Chap. 9.

Sets within sets

A set can be an element of another set. Remember again, anything can be a member of a set! 
You can have sets that get confusing when listed. Here are some examples, in increasing order 
of strangeness:

{1, 2, 3, 4, 5}

{1, 2, {3, 4, 5}}

{1, {2, {3 ,4, 5}}}

{1, {2, {3, {4, 5}}}}
{1, {2, {3, {4, {5}}}}}

An “inner” or “member” set can sometimes have more elements than the set to which it 
belongs. Here is an example:

{1, 2, {3, 4, 5, 6, 7, 8}}

Here, the main set has three elements, one of which is a set with six elements.
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Are you confused?
Do you still wonder what makes a bunch of things a set? If you have a basket full of apples and you call it 
a set, is it still a set when you dump the apples onto the ground? Were those same apples elements of a set 
before they were picked? Questions like this can drive you crazy if you let them. A collection of things is a 
set if you decide to call it a set. It’s that simple.

As you go along in this course, you’ll eventually see how sets are used in algebra. Here’s an easy example. 
What number, when multiplied by itself, gives you 4? The obvious answer is 2. But −2 will also work, 
because “minus times minus equals plus.” In ordinary mathematics, a number can’t have more than one 
value. But two or more numbers can be elements of a set. A mathematician would say that the solution set
to this problem is {−2, 2}.

Here’s a riddle!
You might wonder if a set can be an element of itself. At first, it is tempting to say “No, that’s impossible. 
It would be like saying the Pingoville Ping-Pong Club is one of its own members. The elements are the 
Ping-Pong players, not the club.”

But wait! What about the set of all abstract ideas? That’s an abstract idea. So a set can be a member of 
itself. This is a strange scenario because it doesn’t fit into the “real world.” In a way, it’s just a riddle. Nev-
ertheless, riddles of this sort sometimes open the door to important mathematical discoveries.

Here’s a challenge!
Define the set of all the positive and negative whole numbers in the form of an “implied list” of numerals. 
Make up the list so that, if someone picks a positive or negative number, no matter how big or small it 
might be, you can easily tell whether or not it is in the set by looking at the list.

Solution
You can do this in at least two ways. You can start with zero and then list the numerals for the positive and 
negative whole numbers alternately:

{0, 1, −1, 2, −2, 3, −3, 4, −4, ...}

You can also make the list open at both ends, implying unlimited “travel” to the left as well as to the 
right:

{..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...}

How Sets Relate
Now let’s see how sets can be broken down, compared, and combined. Pictures can do the 
work of thousands of words here.

Venn diagrams

One of the most useful illustrations for describing relationships among sets is a Venn diagram, in 
which sets are shown as groups of points or as geometric figures. Figure 2-1 is an example. The 
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large, heavy rectangle represents the set of all things that can exist, whether real or imaginary (and 
that includes all possible sets). This “emperor of sets” is called the universal set or the universe.

In Fig. 2-1, three of the sets shown inside the universe are finite and two are infinite. Note 
how the objects overlap or are contained within one another or are entirely separate. This is 
important, because it describes the various ways sets can relate to each other. You can see how 
this works by examining the diagram carefully.

All the women in Chicago are people in Illinois, but there are plenty of people in Illinois 
who aren’t women in Chicago. The numbers 2, 4, and 6 are positive whole numbers, but there 
are lots of positive whole numbers different from 2, 4, or 6. The sets of positive and negative 
whole numbers are entirely separate, even though both sets are infinite. None of the positive 
or negative whole numbers is a person in Illinois, and no person in Illinois is number (except 
according to the government, maybe).

Subsets

When all the elements of a set are also contained in a second set, the first set is called a subset
of the second. If you have two sets A and B, and every element of A is also an element of B,
then A is a subset of B. That fact can be written

A ⊆ B
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Figure 2-1 shows that the set of all the women in Chicago is a subset of the set of all the 
people in Illinois. That is expressed by a hatched square inside a shaded oval. Figure 2-1 also 
shows that the set {2, 4, 6} is a subset of the set of positive whole numbers. That is expressed 
by placing the numerals 2, 4, and 6 inside the rectangle representing the positive whole num-
bers. All five of the figures inside the large, heavy rectangle of Fig. 2-1 represent subsets of the 
universe. Any set you can imagine, no matter how large, small, or strange it might be, and no 
matter if it is finite or infinite, is a subset of the universe. Technically, a set is always a subset 
of itself.

Often, a subset represents only part, not all, of the main set. Then the smaller set is called 
a proper subset of the larger one. In the situation shown by Fig. 2-1, the set of all the women in 
Chicago is a proper subset of the set of all the people in Illinois. The set {2, 4, 6} is a proper sub-
set of the set of positive whole numbers. All five of the sets inside the main rectangle are proper 
subsets of the universe. When a certain set C is a proper subset of another set D, we write

C ⊂ D

Congruent sets

Once in a while, you’ll come across two sets that are expressed in different ways, but they turn 
out to be exactly the same when you look at them closely. Consider these two sets:

E = {1, 2, 3, 4, 5, ...}

F = {7/7, 14/7, 21/7, 28/7, 35/7, ...}

At first glance, these two sets look completely different. But if you think of their elements as 
numbers (not as symbols representing numbers) the way a mathematician would regard them, 
you can see that they’re really the same set. You know this because

  7/7 = 1

14/7 = 2

21/7 = 3

28/7 = 4

35/7 = 5

↓
and so on, forever

Every element in set E has exactly one “mate” in set F, and every element in set F has exactly 
one “mate” in set E. In a situation like this, the elements of the two sets exist in a one-to-one
correspondence.

When two sets have elements that are identical, and all the elements in one set can 
be paired off one-to-one with all the elements in the other, they are said to be congruent 
sets. Sometimes they’re called equal sets or coincident sets. In the above situation, we can 
write

E = F
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Once in a while, you’ll see a three-barred equals sign to indicate that two sets are congruent. 
In this case, we would write

E ≡ F

Disjoint sets

When two sets are completely different, having no elements in common whatsoever, then 
they are called disjoint sets. Here is an example of two disjoint sets of numbers:

G = {1, 2, 3, 4}

H = {5, 6, 7, 8}

Both of these sets are finite. But infinite sets can also be disjoint. Take the set of all the even 
whole numbers and all the odd whole numbers:

Weven = {0, 2, 4, 6, 8, ...}

Wodd = {1, 3, 5, 7, 9, ...}

No matter how far out along the list for Weven you go, you’ll never find any element that is also 
in Wodd. No matter how far out along the list for Wodd you go, you’ll never find any element 
that is also in Weven. We won’t try to prove this right now, but you should not have any trouble 
sensing that it’s a fact. Sometimes the mind’s eye can see forever!

Figure 2-2 is a Venn diagram showing two sets, J and K, with no elements in common. 
You can imagine J as the set of all the points on or inside the circle and K as the set of all the 
points on or inside the oval. Sets J and K are disjoint. When you have two disjoint sets, neither 
of them is a subset of the other.
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Overlapping sets

When two sets have at least one element in common, they are called overlapping sets. In formal 
texts you might see them called nondisjoint sets. Congruent sets overlap in the strongest pos-
sible sense, because they have all their elements in common. More often, two overlapping sets 
share some, but not all, of their elements. Here are two sets of numbers that overlap with one 
element in common:

L =  {2, 3, 4, 5, 6}

M = {6, 7, 8, 9, 10}

Here is a pair of sets that overlap more:

P = {21, 23, 25, 27, 29, 31, 33}

Q = {25, 27, 29, 31, 33, 35, 37}

Technically, these sets overlap too:

R = {11, 12, 13, 14, 15, 16, 17, 18, 19}

S = {12, 13, 14}

Here, you can see that S is a subset of R. In fact, S is a proper subset of R. Now, let’s look at a 
pair of infinite sets that overlap with four elements in common:

W3− = {..., −5, −4, −3, −2, −1, 0, 1, 2, 3}

W0+ = {0, 1, 2, 3, 4, 5, ...}

The notation W3− (read “W sub three-minus”) means the set of all positive or negative whole 
numbers starting at 3 and decreasing, one by one, without end. The notation W0+ (read 
“W sub zero-plus”) means the set of whole numbers starting with 0 and increasing, one by 
one, without end. That’s the set of whole numbers as it is usually defined.

Figure 2-3 is a Venn diagram that shows two sets, T and U, with some elements in com-
mon, so they overlap. You can imagine T as the set of all the points on or inside the circle, and 
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U as the set of all the points on or inside the oval. When you have two overlapping sets, one 
of them can be a subset of the other, but this does not have to be the case. It is clearly not true 
of the two sets T and U in Fig. 2-3. Neither of these sets is a subset of the other, because both 
have some elements all their own.

Set Intersection
The intersection of two sets is made up of all elements that belong to both of the sets. When 
you have two sets, say V and W, their intersection is also a set, and it is written V ∩ W. The 
upside-down U-like symbol is read “intersect,” so you would say “V intersect W.”

Intersection of two congruent sets

When two nonempty sets are congruent, their intersection is the set of all elements in either 
set. You can write it like this, for any nonempty sets X and Y,

If X = Y

then

X ∩ Y = X

and

X ∩ Y = Y

But really, you’re dealing with only one set here, not two! So you could just as well write

X ∩ X = X

This also holds true for the null set:

∅ ∩ ∅ = ∅

Intersection with the null set

The intersection of the null set with any nonempty set gives you the null set. This fact is not 
so trivial. You might have to think awhile to fully understand it. For any nonempty set V, you 
can write

V ∩ ∅ = ∅

Remember, any element in the intersection of two sets has to belong to both of those sets. But 
nothing can belong to a set that contains no elements! Therefore, nothing can belong to the 
intersection of the null set with any other set.
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Intersection of two nonempty disjoint sets

When two nonempty sets are disjoint, they have no elements in common, so it’s impossible 
for anything to belong to them both. The intersection of two disjoint sets is always the null 
set. It doesn’t matter how big or small the sets are. Remember the sets of even and odd whole 
numbers, Weven and Wodd? They’re both infinite, but

Weven ∩ Wodd = ∅

Intersection of two overlapping sets

When two sets overlap, their intersection contains at least one element. There is no limit to 
how many elements the intersection of two sets can have. The only requirement is that every 
element in the intersection set must belong to both of the original sets.

Let’s look at the examples of overlapping sets you saw a little while ago, and figure out the 
intersection sets. First, examine these

L = {2, 3, 4, 5, 6}
M = {6, 7, 8, 9, 10}

Here, the intersection set contains one element:

L ∩ M = {6}

That means the set containing the number 6, not just the number 6 itself. Now look at these:

P = {21, 23, 25, 27, 29, 31, 33}
Q = {25, 27, 29, 31, 33, 35, 37}

The intersection set in this case contains five elements:

P ∩ Q = {25, 27, 29, 31, 33}

Now check these sets out:

R = {11, 12, 13, 14, 15, 16, 17, 18, 19}
S = {12, 13, 14}

In this situation, S ⊂ R, so the intersection set is the same as S. We can write that down as follows:

 R ∩ S = S
 = {12, 13, 14} 

How about the set W3− of all positive, negative, or zero whole numbers less than or equal to 3, 
and the set W0+ of all the nonnegative whole numbers?

W3− = {..., −5, −4, −3, −2, −1, 0, 1, 2, 3}
W0+ = {0, 1, 2, 3, 4, 5, ...}
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Here, the intersection set has four elements:

W3− ∩ W0+ = {0, 1, 2, 3}

Figure 2-4 is a Venn diagram that shows two overlapping sets. Think of V as the rectangle 
and everything inside it. Imagine W as the oval and everything inside it. The two regions 
are hatched diagonally, but in different directions. The intersection V ∩ W shows up as a 
double-hatched region.

Are you confused?
Go back and look again at Fig. 2-1. You can see that the set of all women in Chicago (call it Cw) is a proper 
subset of the set of all people in the state of Illinois (call it Ip). You would write down this fact as follows:

Cw ⊂ Ip

The diagram also makes it clear that the intersection of set Cw with set Ip is just the set Cw. In order to be 
in both sets, a person must be a woman in Chicago, that is, an element of Cw. Here’s how you would write 
that

Cw ∩ Ip = Cw

You can always draw a Venn diagram if it will help you understand how sets are related.

Here’s a challenge!
Find two sets of whole numbers that overlap, with neither set being a subset of the other, and whose inter-
section set contains infinitely many elements.
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Solution
There are countless examples of set pairs like this. Let’s look at the set of all positive whole numbers divis-
ible by 4 without a remainder. (When there is no remainder, a quotient comes out as a whole number.) 
Name this set W4d. Similarly, name the set of all positive whole numbers divisible by 6 without a remainder 
W6d. Then

 W4d = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, ...} 

 W6d = {0, 6, 12, 18, 24, 30, 36, 42, 48, ...} 

Both of these sets have infinitely many elements. They overlap, because they share certain elements. But 
neither is a subset of the other, because they both have some elements all their own. Their intersection is 
the set of elements divisible by both 4 and 6. Let’s call it W4d6d. If you’re willing to write out both of the 
above lists up to all values less than or equal to 100, you will see that

 W4d ∩ W6d = W4d6d

 = {0, 12, 24, 36, 48, 60, 72, 84, 96, ...} 

This is an infinite set, and it happens to be the set of all positive whole numbers divisible by 12 without a 
remainder (call it W12d). We can write

W4d ∩ W6d = W12d

Set Union
The union of two sets contains all of the elements that belong to one set or the other, or both. 
When you have two sets, say X and Y, their union is also a set, written X ∪ Y. The U-like 
symbol is read “union,” so you would say “X union Y.”

Union of two congruent sets

When two nonempty sets are congruent, their union is the set of all elements in either set. For 
any nonempty sets X and Y,

If X = Y

then

X ∪ Y = X

and

X ∪ Y = Y

But you’re really dealing with only one set here, so you could just as well write

X ∪ X = X
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And for the null set

∅ ∪ ∅ = ∅

When two sets are congruent, their union is the same as their intersection. This might seem 
trivial right now, but there are situations where it’s not clear that two sets are congruent. In 
cases like that, you can compare the union with the intersection as a sort of congruence test. 
If the union and intersection turn out identical, then you know the two sets in question are 
congruent.

Union with the null set

The union of the null set with any nonempty set gives you that nonempty set. For any
nonempty set X, you can write

X ∪ ∅ = X

Remember, any element in the union of two sets only has to belong to one of them.

Union of two disjoint sets

When two nonempty sets are disjoint, they have no elements in common, but their union 
always contains some elements. Consider again the sets of even and odd whole numbers, Weven

and Wodd. Their union is the set of all the whole numbers. So

Weven ∪ Wodd = {0, 1, 2, 3, 4, 5, ...}

Union of two overlapping sets

Again, let’s look at the same examples of overlapping sets we checked out when we worked 
with intersection. First

L = {2, 3, 4, 5, 6}
M = {6, 7, 8, 9, 10}

The union set here contains nine elements:

L ∪ M = {2, 3, 4, 5, 6, 7, 8, 9, 10}

The number 6 appears in both sets, but we count it only once in the union. (An element can 
only “belong to a set once.”) Now look at these:

 P = {21, 23, 25, 27, 29, 31, 33} 
 Q = {25, 27, 29, 31, 33, 35, 37} 

The union set in this case is

P ∪ Q = {21, 23, 25, ..., 33, 35, 37}
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That’s all the odd whole numbers between, and including, 21 and 37. We count the duplicate 
elements 25 through 33 only once. Now look at these:

R = {11, 12, 13, 14, 15, 16, 17, 18, 19}
S = {12, 13, 14}

In this situation, S ⊂ R, so the union set is the same as R. We can write that down this way:

 R ∪ S = R
 = {11, 12, 13, 14, 15, 16, 17, 18, 19} 

We count the elements 12, 13, and 14 only once. Now these:

 W3− = {..., −5, −4, −3, −2, −1, 0, 1, 2, 3} 
 W0+ = {0, 1, 2, 3, 4, 5, ...} 

Here, the union set consists of all the positive and negative whole numbers, along with zero. 
Let’s write that set as W0± (read “W sub zero plus-or-minus”). Then

 W3− ∪ W0+ = W0± 

 = {..., −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, ...} 

The elements 0, 1, 2, and 3 are counted only once. This set W0± is usually called the set of 
integers. We’ll work more with integers in the chapters to come.

Figure 2-5 is a Venn diagram that shows two overlapping sets. Think of X as the rectangle 
and everything inside it. Imagine Y as the oval and everything inside it. The union of the sets, 
X ∪ Y, is shown by the entire shaded region inside the outer solid line. Part of that line is the 



outside of the rectangle and part of it is the outside of the oval. Any element inside the region 
bounded by the dashed line is counted only once.

Are you confused?
Once more, go back and look at Fig. 2-1, again noting that the set of all the women in Chicago is a proper 
subset of the set of all the people in Illinois, that is, Cw ⊂ Ip. The diagram also makes it plain that the union 
of Cw with Ip is just Ip. To be in one set or the other (or both), a person only has to be a resident of Illinois, 
that is, an element of Ip. It’s not necessary to be a woman, and it’s not necessary to be in Chicago. Here’s 
how you would write that:

Cw ∪ Ip = Ip

Here’s a challenge!
Can you find two sets of whole numbers, with one of them infinite, but such that their union contains 
only a finite number of elements?

Solution
Don’t think about this for too long. You’ll never find two such sets! An element in the union of two sets 
only has to belong to one of the sets. If a set has infinitely many elements, then the union of that set with 
any other set—even the null set—must have infinitely many elements as well.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  Is there any set that is a subset of every other set? If so, what is it? If such a set can’t 
exist, why not?

 2.  Continuing with the theme of Problem 1, is there a way to take nothing and build up 
an unlimited number of different sets from it? If so, show an example. If not, explain 
why not.

 3.  What set does the small, dark-shaded triangle marked P represent in Fig. 2-6? What set 
does the dark-shaded, irregular, four-sided figure marked Q represent?

 4.  If you consider all the possible intersections of two sets in Fig. 2-6, which of those 
intersection sets are empty?

 5. Is the universal set a subset of itself? Is it a proper subset of itself?

 6.  Give an example of two sets, both with infinitely many elements, but such that one is a 
proper subset of the other.
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 7. What is the intersection of these two sets? What is their union?

 A = {1, 1/2, 1/3, 1/4, 1/5, 1/6, ...} 
 G = {1, 1/2, 1/4, 1/8, 1/16, 1/32, ...} 

   In set A, the denominator of the fraction increases by 1 as you go down the list. In set G,
the denominator doubles as you go down the list. All the numerators in both sets are 
equal to 1.

 8.  List all the subsets of {1, 2, 3}. Here’s a hint: Whenever you want to find all the subsets 
of a small set like this, first list its individual elements. Then make up every possible set 
that contains at least one of those elements. Finally, be sure to include the empty set, 
which is a subset of any other set.

 9.  List all the subsets of {1, {2, 3}}. Be careful. The hint given with Problem 8 is important 
here.

 10.  List all the subsets of {1, {2, {3}}}. Be extra careful! The hint given with Problem 8 is 
even more important here.
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The whole numbers starting with 0 and counting upward are usually called the natural num-
bers. Some mathematicians don’t call 0 a natural number. It’s a little like the dispute among 
astronomers over whether Pluto should be called a planet, or whether empty space should be 
called a part of nature. In this book, we’ll call 0 a natural number.

How Natural Numbers are Made
In Chap. 2, you saw how we can build sets from nothing. A similar scheme can be used to gen-
erate the natural numbers. From the natural numbers, we can create fractions, square roots, 
and all the other kinds of numbers.

The starting point: 0

In order to build anything, we need a foundation. The natural numbers start from 0 and 
increase one by one. Zero is an excellent place to begin the number-building process. If you 
think of the natural numbers as evenly spaced points along a straight ray or half-line, 0 is at 
the very beginning. The empty set is a good way to define 0. So let’s agree that the number 0 is 
the set containing no elements, and illustrate it as a point at the left-hand end of an infinitely 
long half-line (Fig. 3-1).

How 1 is defined

We can define the number 1 as the set containing the number 0, so it has one element. 
That makes it different from 0, but doesn’t require that we invent anything new. Because 
the number 0 is the null set, the number 1 can also be imagined as the set containing the 
null set (Fig. 3-2). We now have three different ways we can write the number 1 in terms of 
other things we’ve already defined:

 1 = {0}
 1 = {∅}
 1 = {{ }}
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Building new numbers

Let’s make up a rule that we can use to generate new natural numbers, one after another. 
Suppose we’ve built a certain natural number. Call it n. If we want to create the next higher 
natural number, n + 1, we can take all the natural numbers up to and including n, make them 
into elements of a set, and then call that set the new number. A mathematician would write 
it like this:

n + 1 = {0, 1, 2, 3, ..., n}

If we have any particular natural number p, we can define it on the basis of all the natural 
numbers less than itself, like this:

p = {0, 1, 2, 3, 4, ..., p − 1}

If that’s a little too abstract for you, look at Fig. 3-3. This drawing shows the first six natural 
numbers (0, 1, 2, 3, 4, and 5) as they are built up and assigned to a vertical stack of points that 
ascends upward as far as we care to go.

This is a nifty scheme! A natural number p is a set containing p elements. In theory, those 
elements could be anything, such as apples, stars, atoms, or people. But it’s convenient to use 
all the natural numbers less than p as those elements. That allows us to build the set of natural 
numbers, one on top of the other, like stacking coins. Just as each coin in the stack rests on all 
the coins below itself, every element p in the set of natural numbers “rests on” all the natural 
numbers “below” itself. Once this process is defined, it sets in motion a mathematical “chain 
reaction” that never ends.
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A definition for infinity

When we write out any particular natural number p in the form of a set of smaller numbers, 
that set has exactly p elements in it:

0 = ∅ which has no elements
1 = {0} which has one element

2 = {0, 1} which has two elements
3 = {0, 1, 2} which has three elements

↓
p = {0, 1, 2, 3, ..., p − 1} which has p elements

↓
and so on, forever

Now think of the set of all natural numbers. This set, which we called W (for whole numbers) 
in the last chapter, is symbolized N. We can write

N = {0, 1, 2, 3, ...}

Think about this set N for a minute. What number does it represent, according to the scheme 
we’ve just invented for building natural numbers? Can the set N represent any number at all? 
We can never finish writing the list of its elements. But the mere fact that we can’t write the 
whole list doesn’t mean that the set itself does not exist. We can imagine it, so in the math-
ematical world, it exists!

Mathematicians define the number represented by the entire set N as a form of “infinity” 
and denote it using the last letter in the Greek alphabet, omega, in lowercase (ω). “Omega” is a 
traditional expression for “the end of all things.” In formal terms, ω is called an infinite ordinal
or transfinite ordinal, and it has some strange properties. There are infinitely many infinite 
ordinals! We won’t delve into their properties here, but if you’re interested in learning more 
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Figure 3-3   The natural numbers 
can be built up, each 
one “on top” of its 
predecessors.
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about them, there are plenty of Web sites you can explore. Go to your favorite search engine 
and enter “infinite ordinal” or “transfinite ordinal” in the phrase-search mode.

Are you confused?
In the solution to Prob. 2 in Chap. 2, we saw how sets can be built on each other by “tacking on braces” 
to the null set:

∅
{∅}

{{∅}}

{{{∅}}}

{{{{∅}}}}

{{{{{∅}}}}}

↓
and so on, forever

Why can’t we do that to construct the natural numbers? Well, we could, perhaps. But this method doesn’t 
increase the number of elements in each set as the defined number gets bigger. Each of the above sets, 
except for the first, contains one element. To make a good definition of the natural numbers, number 
theorists want to have the sets contain more and more elements as the defined numbers get larger.

Here’s a challenge!
Write down the natural numbers 0 through 4 purely in terms of braces and the null set symbol, showing 
how each number can be assembled from “multiple nothings.”

Solution
Start with 0, which is equal to ∅. It helps if you write the numbers as sets of smaller numbers and then 
break those expressions down:

0 = ∅
1 = {0} = {∅}

2 = {0, 1} = {∅, {∅}}

3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

4 = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

Special Natural Numbers
You can classify natural numbers in various ways, just as you can classify people according to 
blood type, postal zone of residence, country of residence, or even (maybe someday) planet of 
residence. Here are a few of the most well-known types of natural numbers.
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Even numbers

An even natural number is a whole number whose numeral ends in 0, 2, 4, 6, or 8. If you 
multiply every number in the set N by 2, you get the set Neven of all the even natural numbers. 
This is the familiar set

 Neven = {0, 2, 4, 6, 8, 10, ...}
 = {0×2, 1×2, 2×2, 3×2, 4×2, 5×2, ...}

Now do the same thing, but backwards. If you divide every number in the set Neven by 2, you 
get the set N of all natural numbers:

 N = {0, 1, 2, 3, 4, 5, ...}
 = {0/2, 2/2, 4/2, 6/2, 8/2, 10/2, ...}

Odd numbers

An odd natural number is a whole number whose numeral ends in 1, 3, 5, 7, or 9. If you mul-
tiply every number in the set N by 2 and then add 1 to the result, you get the set Nodd of all 
the odd natural numbers:

 Nodd = {1, 3, 5, 7, 9, 11, ...}
 = {(0×2)+1, (1×2)+1, (2×2)+1, (3×2)+1, (4×2)+1, (5×2)+1, ...}

Now do the same thing, but backwards. If you subtract 1 from every number in the set Nodd

and then divide the result by 2, you get the set N of all natural numbers:

 N = {0, 1, 2, 3, 4, 5, ...}
 = {(1−1)/2, (3−1)/2, (5−1)/2, (7−1)/2, (9−1)/2, (11−1)/2 ...}

The union of the set of all the even natural numbers and the set of all the odd natural numbers 
is the entire set of natural numbers. You might find this mouthful of words easier to under-
stand if you write it in symbols:

Neven ∪ Nodd = N

This means that you can pick any natural number, as large as you want, and it will always 
be either even or odd. But you’ll never see a natural number that is both even and odd.

Factors

Whenever you multiply two natural numbers together, you get another natural number. This 
is obvious, even trivial, when one of the numbers is 0 or 1. Any number times 0 is equal to 0, 
and any number times 1 is equal to itself. When you start working with the other numbers, 
things get more interesting.

Let’s pick a natural number, preferably a fairly large one. How about 99? How can we 
break this number down into a product of other natural numbers besides itself and 1? It’s easy 
to see that 33 and 3 will work:

33 × 3 = 99
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We can’t break the number 3 down into a product of natural numbers other than itself and 1. 
How about 33? This can break down into the product of 11 and 3:

33 = 11 × 3

We can’t break 11 down into a product of natural numbers other than itself and 1. Now we 
have 99 as a product of “unbreakables”:

99 = 11 × 3 × 3

Whenever you have a natural number expressed as a product of other numbers, those other 
numbers are called factors. The process of breaking a number down into a product of other 
numbers is called factorization or factoring.

Prime and composite numbers

An “unbreakable” natural number is called a prime number, or simply a prime. It’s a natural 
number larger than 1 that can only be factored into a product of itself and 1. Table 3-1 lists 
the first 24 prime numbers. If this doesn’t go high enough for you, there are plenty of lists of 
primes on the Internet.

Any nonprime natural number can be factored into a product of two or more primes. 
The numbers in such a product are called the prime factors, and the whole product is 
called a composite number. When you want to find the prime factors of a large natural 
number, you can get some help from a calculator that has a square root key. The square 
root of a number is a smaller number, not always whole, that gives you the original num-
ber when multiplied by itself.

Here’s how the process goes. First, use a calculator to find the square root of the number 
you want to factor. Once you have done that, “chop off ” any nonzero digits that might appear 
after the decimal point, so you get a whole number. Then add 1 to that number. Call this new 
whole number s. Now divide the original number by all the primes (referring to Table 3-1) less 
than or equal to s, starting with the largest prime and working your way down. If you ever get 
a whole-number quotient as you go through this process, then you know that the divisor and 

Table 3-1. The first 24 prime numbers. The number 1 is not considered prime. Any 
natural number, no matter how large, can be factored into a product of primes.

Order Prime Order Prime Order Prime

 1st 2   9th 23 17th 59
 2nd 3 10th 29 18th 61
 3rd 5 11th 31 19th 67
 4th 7 12th 37 20th 71
 5th 11 13th 41 21st 73
 6th 13 14th 43 22nd 79
 7th 17 15th 47 23rd 83
 8th 19 16th 53 24th 89



the quotient are both factors of the original number. Sometimes the quotient will be prime, 
and sometimes it won’t be. If it isn’t prime, then it can be factored down further. Don’t stop 
dividing the original by primes until you get all the way down to 2.

Once you’ve found all the primes smaller than s that divide your original number without 
giving you a remainder, you have found the prime factors of your original number. Some 
product of these will give you that original number. You might find that one of the primes is 
a factor twice, three times, or more. For example:

99 = 11 × 3 × 3
297 = 11 × 3 × 3 × 3

891 = 11 × 3 × 3 × 3 × 3
2,673 = 11 × 3 × 3 × 3 × 3 × 3

Perfect squares

Whenever you multiply a number by itself, the process is called squaring, and the product is 
called a square. If you multiply a natural number by itself, you get a perfect square. If you take 
the square root of a perfect square, you always get a natural number.

Perfect squares, unlike primes, are easy to find if you have a calculator. Table 3-2 lists the 
first 24 perfect squares, with 0 and 1 included.

Are you confused?
If you see a large natural number, you can sometimes tell right away that it’s not prime. If its numeral 
ends in an even number, you know that one of its factors is 2, so it can be factored into a pair of natural 
numbers other than 1 and itself.

Sometimes, numbers seem at first as if they ought to be prime, but it turns out that they are not. A 
good example is 39. It can be factored into 13 × 3. Another is 51, which can be factored into 17 × 3. Still 
another is 57, which can be factored into 19 × 3.

Table 3-2. The first 24 perfect squares. The numbers 0 and 1 are included here. 
When you take the square root of a perfect square, you always get a natural number. 
Note that we start with the “0th” rather than the “1st” in order here. That way, the 

order agrees with the number squared.

Order Square Order Square Order Square

 0th 0 8th 64 16th 256
 1st 1 9th 81 17th 289
 2nd 4 10th 100 18th 324
 3rd 9 11th 121 19th 361
 4th 16 12th 144 20th 400
 5th 25 13th 169 21st 441
 6th 36 14th 196 22nd 484
 7th 49 15th 225 23rd 529
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The best way to find out whether or not a large odd number is prime is to try to factor it into primes. 
If the only factors you get are itself and 1 (i.e., if you can’t factor it into primes), then your number is 
prime. There are some other techniques you can use determine when a number is not prime, such as the 
“divisibility” tricks you’ll see later in this chapter.

Here’s a challenge!
When an even number is multiplied by 7, the result always even. Show why this is true.

Solution
For the first few even natural numbers, multiplication by 7 always gives you an even number. Here are the 
examples for all the single-digit even numbers:

 0 × 7 = 0

 2 × 7 = 14

 4 × 7 = 28

 6 × 7 = 42

 8 × 7 = 56

You can prove that multiplying any even number by 7 always gives you an even number if you realize 
that the last digit of an even number is always even. Think of an even number p—any even number. This 
number p, however large it might be, must look like one of the following:

______0

______2

______4

______6

______8

where the long underscore represents any string of digits you want to put there. Now think of “long mul-
tiplication” by 7. Remember how you arrange the numerals on the paper and then do the calculations. 
You always start out by multiplying the last digits of the two numbers together, getting the last digit of the 
product. The even number on top, which you are multiplying by the number on the bottom, must end 
in 0, 2, 4, 6, or 8. If the number on the bottom is 7, then the last digit in the product must be 0, 4 (the 
second digit in 14), 8 (the second digit in 28), 2 (the second digit in 42), or 6 (the second digit in 56) 
respectively. The product of any even number and 7 is therefore always even.

Natural Number Nontrivia
Here are some interesting facts about natural numbers. I was about to call them “trivia,” 
but after thinking about it for awhile, I decided that the ones involving primes are not 
trivial at all!



Divisibility

If you want to know whether or not a large number can be divided by a single-digit number 
without leaving a remainder, there are some handy little tricks you can use. You can use a cal-
culator to see immediately whether or not any number is “cleanly” divisible by any other, but 
the following rules can be interesting anyway.

• A natural number is divisible by 2 without a remainder if it is even.
• A natural number is divisible by 3 without a remainder if the sum of the digits in its 

numeral is a natural-number multiple of 3.
• A natural number is divisible by 5 without a remainder if its numeral ends in either 

0 or 5.
• A natural number is divisible by 9 without a remainder if the sum of the digits in its 

numeral is a natural-number multiple of 9.
• A natural number is divisible by 10 without a remainder if its numeral ends in 0.

You can combine these tricks and get the following facts:

• A natural number is divisible by 4 without a remainder you get an even number after 
dividing it by 2.

• A natural number is divisible by 6 without a remainder if it is even and the sum of its 
digits is a natural-number multiple of 3.

• A natural number is divisible by 8 without a remainder if you can divide it by 2 and get 
an even number, and then divide that number by 2 again and get an even number.

There aren’t any convenient tricks, other than using a calculator or performing “long divi-
sion,” to find out if a natural number is divisible by 7 without leaving a remainder.

Is there a largest prime?

Now that you know what a prime number is, and you know that any nonprime natural num-
ber can be broken down into a product of primes, you might ask, “Is there a largest prime?” 
The answer is “No.” Here’s why. You might have to read the following explanation two or 
three times to completely understand it. Try to follow it step-by-step. If you can accept each 
step of this argument one at a time, that’s good enough. The fact that there is no such thing 
as a largest prime is one of the most important facts, or theorems, that have ever been proven 
in mathematics.

Let’s start by imagining that there actually is a largest prime number. Then we’ll prove 
that this assumption cannot be true by “painting ourselves into a corner” where we end up 
with something ridiculous. Now that we have decided there is a largest prime, suppose we give 
it a name. How about p? Theoretically, we can list the entire set of prime numbers (call it P).
It might take mountains of paper and centuries of time, but if there is a largest prime, we can 
eventually write all of the primes. We can describe the set P in shorthand like this:

P = {2, 3, 5, 7, 11, 13, ..., p}

Suppose that we multiply all of these primes together. We get a composite number, because 
it is a product of primes. No doubt, this number is huge—larger than any calculator can 
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display—but it will be finite. Let’s call it y. What if we add 1 to y, getting a number even 
larger than the product of all the primes? If you call that new number z, you can express it 
like this:

 z = y + 1
 = (2 × 3 × 5 × 7 × 11 × 13 × ... × p) + 1

Now we know that z has to be larger than p, because z is 1 more than, say, 2 × p or 3 × p
or 5 × p or 7 × p. But there’s something else interesting about z. If we divide z by any prime 
number, we always get a remainder of 1. That’s because if we divide y by any prime, there’s no 
remainder, and z is exactly 1 more than y.

We know that z can’t be prime, because we’ve already determined that z is bigger than p,
and we have already assumed that p is the largest prime. So z is composite. Because z is 
composite, it must be divisible without a remainder by at least one prime, that is, one 
element of set P. But wait! We just figured out a minute ago that if we divide z by any 
element of P, we get a remainder of 1. Therefore, z can’t be composite. But it can’t be 
prime either. But every natural number larger than 1 is either prime or composite! But ... 
but ... but ... we are trapped!

There’s only one way out of this situation. Our original assumption, that there is a largest 
prime number, must be false. Reductio ad absurdum, which we first encountered in the solu-
tion to Prob. 5 at the end of Chap. 2, comes to the rescue again!

How many primes?

The discovery that there is no largest prime number leads us straightaway into another impor-
tant truth: there are infinitely many prime numbers. When a mathematician proves a major 
theorem like the one we just explored, and then some other fact follows on its heels, that 
secondary fact is called a corollary.

Let’s start out by assuming that the number of primes is finite, and load up our reductio ad 
absurdum “cannon” for another shot. This time it’s going to be easy. If the number of primes 
is finite, we can list them all. That means one of them has to be larger than all the others, so it 
is the largest prime. But we just discovered that there is no largest prime. Contradiction! The 
number of primes can’t be finite, so it must be infinite.

Are you confused?
When you have found the prime factors for a composite number, you can write the product out in any 
order. But unlike a listing of the elements of a set, in which you are allowed to list any element only once, 
you must be sure to include all the occurrences of a prime factor if it appears more than once. Take this 
example:

6,615 = 3 × 3 × 3 × 5 × 7 × 7

You will get into trouble if you say, “The set of prime factors of 6,615 is {3, 5, 7}.” How do you know 
whether a given factor occurs once, twice, three times, or more?

Some people get around this issue by putting a little superscript called an exponent after a number in the 
set to indicate that it occurs more than once as a factor. They write that the set of prime factors of 6,615 is 



{33, 5, 72}. That’s okay if you can remember that 33 does not literally mean 27 in this context, and 72 does 
not literally mean 49. (Neither 27 nor 49 are prime!)

The clearest way to express the prime factors of a composite number is to write out the product, list-
ing each factor as many times as it “deserves,” and using multiplication symbols between them. You can 
arrange the product in any order, but it helps if you start with the smallest factor and go up, or start with 
the largest factor and go down.

There is only one way to factor a composite number into a product of primes. This fact is called the 
Fundamental Theorem of Arithmetic.

Here’s a challenge!
The numbers 2 and 3 are both prime, and they are also consecutive whole numbers. Are there any other 
examples of two consecutive whole numbers that are both prime?

Solution
No, none of the even numbers larger than 2 (i.e., 4, 6, 8, 10, etc.) are prime. We can factor 2 out of any 
such number, and we always get a natural number bigger than 1. By elimination, then, all the primes larger 
than 2 are odd. If we take any of these primes and then find the next natural number, we are adding 1 to 
an odd number. That always produces an even number, which we have just seen can’t be prime.

The conclusion: when we come across any prime number larger than 2, the next consecutive natural 
number is always composite.

The Integers
Centuries ago, negative numbers weren’t taken seriously. How could you have less than none 
of anything? When the set of all negative whole numbers was finally joined together with the 
set of natural numbers, the result became known as the set of integers. That set is symbolized 
Z, like this:

Z = {..., −3, −2, −1, 0, 1, 2, 3, ...}

Negative numbers

What is a negative number, exactly? That question is deeper than it seems at first thought. We 
can start to answer it by creating situations where negative numbers are really useful.

In the United States, most nonscientific people use the Fahrenheit temperature scale, where 
32 degrees represents the freezing point of water. Scientists, and people outside the United 
States, use the Celsius temperature scale, where 0 degrees represents the freezing point of water. 
In either system, temperatures often get colder than 0 degrees. Then people start calling tem-
peratures negative.

Here’s another real-life situation where negative numbers come in handy. These days, 
nearly everyone has a credit card. When you first get the card, it has a balance of 0. That 
means you haven’t put any money in the bank that gave you the card, but you don’t owe the 
bank any money, either. What if you buy some items at the local department store, “charging” 
up a balance of $49? How much money is in the account now? If you think of it as the bank’s 
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account, they have a claim to $49 of your money. If you think of it as your account, you’re 
$49 dollars in debt. You have, in a sense, negative $49. If you go to another store and charge 
$10 more, you’ll end up with negative $59. In theory, there is no limit to how large negatively
your account, in dollars, can become. (In practice, the bank will put a limit on it.)

Negative whole numbers are denoted by putting a minus sign in front of a natural num-
ber. The exception is 0, where a negative sign doesn’t change the meaning. “Negative 0” is the 
same thing as “positive 0” in ordinary mathematics. In the credit-card situation just described, 
you start out with $0 and then go to −$49, then to −$59. The same thing can happen with 
temperature. If it was 0 degrees yesterday afternoon and then the temperature fell by 
10 degrees overnight, it was −10 degrees in the morning.

A “number reflector”

We’ve already shown how the natural numbers can be generated from sets. How can we add 
the negative natural numbers to the “normal” or positive ones, making sure to include 0 so we 
get the entire set of integers?

We can take two natural-number rays (or half-lines), put minus signs in front of all the 
numbers on one of the rays, and then stick the rays together end-to-end so “positive 0” and 
“negative 0” are on top of each other. Figure 3-4 shows how this works. You might think of the 

0

1

Proceed forever!

2

{0}

{0, 1}

{0, 1, 2}3

Proceed forever!

{0}

{0, 1}

{0, 1, 2}

1

2

3

–

–

–

–

–

–“Number reflector”

Figure 3-4 The negative numbers can be built up from the positive ones 
by inventing an imaginary “number reflector” that reverses the 
“sense” of every natural number and gives it a “twin.”



natural numbers as being attached to a ray that stands straight up above the “number reflec-
tor,” and their negatives as being attached to a ray that dangles straight down.

This is a fine way to imagine the integers, but in mathematical terms, it is a little “impure.” 
In order to define the negative numbers this way, we have to come up with new gimmicks 
that we did not need to define the natural numbers. A pure mathematician would demand 
some way to define all the integers, positive, negative, and 0, using only the idea of a set and 
nothing else. We can define the entire set of integers in the same way as we defined the set of 
natural numbers. Put your “abstract thinking cap” on again (if it isn’t glued to your head by 
now), and keep in mind that what you’re about to read does not represent the only way the set 
of integers can be defined in a “pure” way.

Building the integers

The natural numbers have a clear starting point, which is 0. But the integers go on forever in 
two directions. At least, that’s the impression you’ll get if you look at Fig. 3-4. How can you 
start moving along a line that goes in two directions, and cover every point on it? You have to 
pick one direction or the other, right?

Wrong! In the real world that might be true, but in the “mathematical cosmos” we have 
powers that ordinary mortals lack.

Take a look at Fig. 3-5. Instead of hopping from 0 to 1, and then from 1 to 2, and then 
from 2 to 3, always moving in the same direction, suppose you hop alternately back and forth. 
Start at 0, then move up one unit to 1. Then go down two units to −1. Then go up three units 
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Figure 3-5  Here’s a way to generate the set of integers 
with a scheme similar to the one we used 
to build up the set of natural numbers.
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to 2, down four units to −2, up five units to 3, down six units to −3, and so on. Keep hop-
ping alternately up and down, making your hop one unit longer every time. In Fig. 3-5, the 
integers themselves are shown to the left side of the vertical line, and their equivalents, built 
up as sets of previously defined integers, are shown on the right side. Pick any integer, positive 
or negative, as big or small as you want. You’ll eventually reach it if you make enough hops.

The next time you are at a party with a bunch of mathematics lovers and somebody asks 
you, “What is the number −2, really?” you can say, “Well, that can be debated. But if you like, 
we can define it as the set containing 0, 1, −1, and 2.” That should get you a raised eyebrow. 
If you want to bring down the house, you can go to an old-fashioned chalk blackboard (every 
good mathematics party has one, right?) and scribble out the following to make your point:

0 = ∅
1 = {0} = {∅}

−1 = {0, 1} = {∅, {∅}}
2 = {0, 1, −1} = {∅, {∅}, {∅,{∅}}}

−2 = {0, 1, −1, 2} = {∅, {∅}, {∅, {∅}},{∅, {∅}, {∅, {∅}}}}
↓

and so on, forever

Are you confused?
The integers can get confusing when you compare values. If you draw a number line and represent the 
integers as points on it, such as is done in Figs. 3-4 or 3-5, what does it mean if one number is “larger” or 
“smaller” than another? How about the expressions “less than” or “greater than”?

A mathematician will tell you that the integers get smaller as you move downward in Figs. 3-4 or 3-5, and
larger as you go upward. For example, −5 is smaller (or less) than −2, and any negative integer is smaller 
(or less) than any natural number. Conversely, −2 is larger (or greater) than −5, and any natural number 
is larger (or greater) than any negative integer. But that can begin to seem strange if you think about it 
awhile. How can −158 be “smaller” than −12? If you find yourself in debt by $158, isn’t it a bigger problem 
than if you are in debt by $12?

In the literal sense, −158 is indeed smaller (or less) than −12, just as −158° is colder than −12°. In fact, 
the integer −158 is less than −12 or −32 or −157. But −158 is larger negatively than −12 or −32 or −157. 
To avoid confusion when comparing numbers, the best policy is to be careful with your choice of words. 
Figure 3-6 should clear up any lingering uncertainty you might have about this.

Here’s a challenge!
If we allow all negatives of primes (i.e., −2, −3, −5, −7, −11, −13, −17, −19, …) to be called prime, does 
that make all the nonprime negative numbers composite?

Solution
Let’s keep the traditional definition of composite number: a product of two or more primes. Now imagine 
that we have some positive composite number. It is therefore a product of primes that are all positive. If we 
make one of those primes negative, we get the negative of that composite number. For example:

100 = 5 × 5 × 2 × 2



If we remember the basic multiplication sign rules, we can see that

−100 = −5 × 5 × 2 × 2

This same technique can be applied to any negative nonprime number smaller than −3 to show that it’s 
composite! We have to be sure that “negative primes” are allowed in the mathematical system we’re deal-
ing with. According to the traditional definition, all the primes are natural numbers larger than 1, so this 
trick won’t work. 

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  If the number 0 is the set containing nothing, then what number does nothing represent?

 2.  The number 3 is odd. If a number n is divisible by 3 without a remainder, does that 
mean n must be odd?

 3.  When an odd number is multiplied by 3, is the result always odd? If so, demonstrate 
why. If not, show a counterexample (a situation where an odd number is multiplied by 3 
to get an even number).
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Figure 3-6 This drawing, and careful choice of words, can help you 
avoid confusion when comparing the values of integers.
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 4. Find out whether or not 901 is a prime number.

 5. Break down 1,081 into a product of primes.

 6.  Break down 841 into a product of primes. What interesting property does this number 
have?

 7.  Break down 2,197 into a product of primes. What interesting property does this 
number have?

 8.  Are any negative integers composite if we insist on using the traditional definition of a 
prime number?

 9.  Can you think of a good reason why the natural numbers 0 and 1 are not defined as 
prime? Here’s a hint: It should never be possible for a number to be both prime and 
composite.

 10.  Show how the natural numbers can be paired off one-to-one with the integers. Here’s a 
hint: Use Fig. 3-5 with its pattern of dashed, arrowed guidelines to create an “implied 
one-ended list” of the integers that captures them all.



Let’s take a close look at the processes, also called operations, known as addition and subtrac-
tion. Much of this material will seem like a review of arithmetic to you, but you’ll need to 
know it “forward and backward” to work with the algebra to come later.

Moving Up and Down
Adding a number to another, or subtracting a number from another, are sophisticated ways of 
counting. When you do these operations with integers, it’s like moving up or down, point-by-
point, on a vertical number line of the sort you saw in the last chapter.

Absolute value

Imagine the “number reflector” from Chap. 3 as a flat plane perpendicular to the number 
line and passing through 0, as shown in Fig. 4-1. Every number is a certain distance above or 
below the “number reflector.” The distance of an integer from the “number reflector” is called 
the absolute value of the integer.

To denote absolute value, you enclose a numeral or expression between vertical lines. The 
absolute value of 2 is written |2|, and the absolute value of −3 is written |−3|. If you have any 
quantity, no matter how complicated, you can always indicate its absolute value by putting 
vertical lines on either side of the set of symbols that represents it.

There’s no such thing as negative absolute value, because it is an expression of distance 
without taking direction into account. To say that a number has an absolute value of −3 is like 
saying that your house is −3 miles from your cousin’s house on the other side of town. That’s 
nonsense! You can talk about direction as well as distance. Then negative values are possible. 
When you move or travel over a certain distance in a certain direction, it is called displace-
ment, and it can be positive or negative. It can even go off in other directions, such as west, or 
straight up, or toward the sun, or toward your cousin’s house.

The absolute value of any natural number (or nonnegative integer) is equal to that natural 
number. The absolute value of any negative integer is its “image” in the “number reflector.” If 
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you have a numeral that represents a negative integer, you can get the numeral representing its 
absolute value by removing the minus sign.

Meet the variables!

When you want to talk about how numbers relate to each other but don’t want to specify any 
particular numbers, you can use variables instead. For variables representing integers, math-
ematicians most often use small, italic letters from a through q. When you see something 
like a + b = c, you know you are supposed to add a quantity a to another quantity b to get a 
third quantity c. You don’t have to know what the actual numbers are, but only that they are 
related in a certain way. The term variable means that a quantity doesn’t have any fixed value; 
it can vary. 

To add, move upward

Now let’s get back to displacement. We’ll go up and down here, because we’ve already illus-
trated the number line in a vertical sense. Think of upward distances as positive displace-
ments, and downward distances as negative displacements. If we have an integer a and we 
want to add another integer b to it, we first find the point on the number line representing a.
Then we move up b units. That will get us to the point representing a + b.

As an example, suppose a = −3 and b = 2. We start at the point for −3 and move up 2 units. 
That gets us to the point for −3 + 2. It happens to be −1, as shown on the left side of Fig. 4-2. 
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What if we reverse the order of this sum? We start with 2 and travel upward −3 units. We’re 
talking about displacement here, not simple distance, so negatives can make sense! An upward 
displacement of −3 units is the same as a downward displacement of 3 units. This process is 
shown on the right in Fig. 4-2. When we add the integers −3 and 2 in either order as shown, 
we end up at the same point, which corresponds to −1. We have now analyzed these two 
facts:

−3 + 2 = −1

and

2 + (−3) = −1

To subtract, move downward

If you think it’s ridiculous to imagine downward movement as negative upward movement, 
you’re right, except for one little catch. You are going to come up with situations in mathemat-
ics where you’ll get a negative quantity for an answer to a problem, and it won’t seem to make 
sense. Suppose you fly a rush-hour traffic observation helicopter for your local TV station. 
You see that a rain shower has caused an existing jam in the westbound traffic on Boxelder Bug 
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Figure 4-2 On the left, we add −3 + 2. On the right, 
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Boulevard to be displaced by −4 miles. This means the jam has been displaced to the east 
by 4 miles. The jam has moved in the opposite direction from the flow of traffic!

Look again at the right-hand side of Fig. 4-2. You add a negative number to some other 
quantity. Adding a negative number is the same thing as subtracting the absolute value of that 
number. Using variables, you can write that statement as

a + (−b) = a − |−b|

which means the same thing as

a + (−b) = a − b

If you have an integer a and you want to subtract another integer b from it, first find the 
point on the number line representing a. Then travel down b units. That will get you to the 
point representing a − b.

Are you confused?
Have you been wondering why negative numbers always have a minus sign in front of them, but positive 
numbers don’t have a plus sign? Is there something technically wrong with including a plus sign so people 
know when a number is positive? Why leave any doubt?

That’s a good question. The answer is that there’s no need for a plus sign in a positive number. A num-
ber is always assumed to be positive unless there’s a minus sign in front of it to indicate that it’s negative. 
It is a mathematical convention. (In this context, “convention” means “custom” or “way of doing things,” 
and not “a huge gathering of people.”) If you think about this for a little while, it makes sense. Why write 
+3 + (+7) when you can write 3 + 7?

Here’s a challenge!
In terms of the integer line, express the fact that when you subtract −5 from −3, you get 2. Write it down 
in the simplest possible form.

Solution
When you subtract a negative number, you move negatively downward, meaning that you actually travel 
upward. Figure 4-3 is a number-line drawing that shows how this works. You start at −3 and move down 
−5 units, which means you really move up 5 units. You finish at the point corresponding to 2. You can 
write

−3 − (−5) = 2

In its simplest possible form, this fact is written

−3 + 5 = 2



Identity, Grouping, and Signs
Let’s review the mechanics of addition and subtraction, and make sure you understand how 
the signs work. Then we’ll proceed to two important rules, called laws, that govern addition 
and subtraction. These laws apply not only to the integers, but to all quantities, expressions, 
and numbers you’ll encounter in algebra.

The identity element

There is one special integer that you can add to, or subtract from, any integer, and it will never 
change the value. That integer is 0. Because adding 0 to a number gives you the same number 
again, 0 is called the additive identity element. You can also call it the “subtractive identity 
element,” although that term is informal. The word “identity” means that you always get an 
output value identical to the input value. For any integer a, the following two statements are 
always true:

a + 0 = 0

and

a − 0 = 0

0

1

2

3

1

2

3-

-

-

Start here

Finish here

Move downward
by -5 units

Figure 4-3 Here, we start with 
−3 and then subtract
−5, ending up with 2.
When we go negatively 
downward, we go 
upward by the 
equivalent distance.
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Grouping with parentheses

A couple of minutes ago, you saw some expressions containing parentheses around a negative 
number or quantity. Here’s one of those expressions, with the right-hand side changed to a 
variable:

−3 − (−5) = a

These parentheses indicate that you should consider −5 as “negative 5,” not “the subtraction 
of 5.” If you don’t write the parentheses, the above expression is

−3 − −5 = a

This is an example of improper mathematical grammar. It’s a problem because it’s ambigu-
ous. People can’t be sure what it means. Should you subtract 5 from −3? That would give you 
−8, not 2. Should you subtract 5 from −3 twice? That would give you −13. Does the double 
minus sign mean something different from plain old subtraction or addition?

Pay attention to parentheses when you see them. When you write an expression, be sure 
to include parentheses when you need them. You can add extra parentheses to an expression 
as long as you don’t change the meaning. Always be sure the number of opening parentheses 
in an expression is the same as the number of closing parentheses.

Signs in addition and subtraction

Here’s a summary of how addition and subtraction work for negative integers as well as for 
positive ones:

• When you add a positive, the result grows larger.
• When you subtract a positive, the result grows smaller.
• When you add a negative, the result grows smaller; it’s like subtracting a positive.
• When you subtract a negative, the result grows larger; it’s like adding a positive.

You might want to memorize two general facts. For any two integers a and b,

a + (−b) = a − b

and

a − (−b) = a + b

Are you confused?
Here’s a real-life situation where the idea of subtracting a negative number makes pretty good sense. 
Suppose the people in your town are trying to reduce their driving because of high gasoline prices. 
They’ve started a support group. People go to meetings once a month to share information about how 
much less they’ve driven in the past month compared with the month before that. One after another, 
the members of the group tell their stories. William says, “I drove 45 fewer miles.” Anna says, “I cut 
back by 65 miles.” Maria says, “I drove 200 miles less last month!” Then it comes to you. You have 



not done so well. The group leader asks, “How much did you cut back? Go on, don’t be afraid to tell 
us.” You blush, clear your throat, hold your head up, and declare, “I reduced my driving last month 
by negative 80 miles.”

Here’s a challenge!
Start with the integer 5, add −3 to it, then subtract −6 from that, then subtract 10 from that, then add 14 
to that, and finally subtract −21 from that. What’s the result?

Solution
We can break this down step-by-step, paying careful attention to signs and using parentheses when we 
need them. Here we go:

5 + (−3) = 5 − 3 = 2

2 − (−6) = 2 + 6 = 8

8 − 10 = −2

−2 + 14 = 12

12 − (−21) = 12 + 21 = 33

The Commutative Law for Addition
In basic arithmetic, you learned that you can add a long string of numbers backward or for-
ward, and it doesn’t matter. Good accountants take advantage of this when checking their 
work. They’ll add up a column of numbers from top to bottom, then again from bottom to 
top, just to be sure they have done the arithmetic correctly.

It works when you add

The fact that you can add two integers in either order and get the same result is called the 
commutative law for addition. It means you can commute (interchange) the two numbers you’re 
adding, called the addends, and get the same sum either way. In formal terms, a mathematician 
would say that for any two integers a and b,

a + b = b + a

This works whether the numbers are positive, negative, or 0. It also works if there are three, 
four, five, or more numbers in a sum, as long as the number of addends is not infinite.

It fails when you subtract

In subtraction, the order does matter. It’s easy to find an example that shows why. Consider 
this:

3 − 5 = −2
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but

5 − 3 = 2

In formal terms we would say that for any two integers a and b, it is not always true that

a − b = b − a

In fact, it is almost never true. It only works if a and b happen to be the same.

Turning it inside-out

We can use a trick that will make the commutative law “sort of work” with subtraction. This 
trick is often used by accountants who must work with long columns of credits (money added) 
mixed with debits (money taken away). This trick involves taking every subtraction and turn-
ing it into the addition of a negative number. Remember that adding a negative is the same as 
subtracting a positive. That is, for any two integers a and b,

a − b = a + (−b)

Because the right-hand side of this equation is an addition problem, we can apply the com-
mutative law and get

a + (−b) = −b + a

Now we can combine the above two equations into a three-way equation:

 a − b = a + (−b)
 = −b + a

Then we can get rid of the middle term and write

a − b = −b + a

Let’s call this the “inside-out commutative law for subtraction.” That’s not a formal name, but 
you might find it useful as a memory aid.

Are you confused?
Imagine that you have a checking account and your balance on January 1 was exactly $700. Consider 
that as a “starting deposit.” By the end of June, you’ve made 15 deposits and written 20 checks. You want 
to figure out your balance as of June 30. You convert all the checks to “negative deposits.” For example, 
a check for $25 becomes a “negative deposit” of −$25. Now you can add all the “positive deposits” and 
“negative deposits” in any order, and you’ll always end up with the same final balance—if you don’t make 
any calculation errors!



Here’s a challenge!
Suppose you have bought a new car and you want to go for a test drive. You live on a flat plain that seems 
to stretch forever in all directions. You start driving on a straight highway that runs north and south for 
hundreds of miles on either side of your home town. You drive 25 miles north, then turn around and 
drive 45 miles south. Then you turn around again, driving 50 miles north. Then you go 7 miles south,
12 miles north, 49 miles south, and finally 5 more miles south. How far from your home town, and it 
what direction, will you finish? Solve this problem in two different ways.

Solution
First, consider driving north as “positive mileage” and driving south as “negative mileage.” Then you drive 
the following distances in miles, and in this order:

25, −45, 50, −7, 12, −49, −5

Add these all up:

25 + (−45) + 50 + (−7) + 12 + (−49) + (−5) = −19

That’s 19 miles south of your home town. Now imagine that driving south is “positive mileage” and driv-
ing north is “negative mileage.” Then you your trip is a sum of displacements like this:

−25 + 45 + (−50) + 7 + (−12) + 49 + 5 = 19

Again, that’s 19 miles south.

The Associative Law for Addition
Another major rule that applies to addition involves how the addends are grouped when you 
have three or more numbers. You can lump the addends together any way you want, and you’ll 
always end up with the same result. The simplest case of this rule, called the associative law for 
addition, involves sums of three integers.

It works when you add

Here’s how a mathematician would state the associative law for three addends. For any three 
integers a, b, and c

 (a + b) + c = a + (b + c)

For instance:

 (3 + 5) + 7 = 8 + 7 = 15

and

3 + (5 + 7) = 3 + 12 = 15
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This works whether the numbers are positive, negative, or 0. It also works if there are four or 
more numbers in a sum.

It fails when you subtract

In subtraction, the grouping does matter. It’s easy to see why you can’t apply the associative law 
to subtraction and get away with it. Consider this:

 (3 − 5) − 7 = −2 − 7 = −9

but

 3 − (5 − 7) = 3 − (−2)
 = 3 + 2 = 5 

In formal terms, we would say that for any three integers a, b, and c, it is not always true that

 (a − b) − c = a − (b − c)

The associative law hardly ever works with subtraction.

Mixing the signs

How about mixed addition and subtraction? Let’s try it with some integers.

 (3 + 5) − 7 = 8 − 7 = 1

and

3 + (5 − 7) = 3 + (−2) = 1

It works in this case. What happens if we switch the positions of the signs?

 (3 − 5) + 7 = −2 + 7 = 5

but

3 − (5 + 7) = 3 − 12 = −9

This time, it fails! Now we know that with mixed signs, the associative law sometimes works, 
but not always. If something is to be called a law in mathematics, “sometimes” does not suf-
fice. “Usually” won’t do the job either. Even “almost always” is not good enough. In order to 
be a law, something has to work all the time.

It’s easy to prove that a law does not hold in every possible case. You only have to find one 
case where it fails, called a counterexample, to show that something can’t be called a law. Prov-
ing that a law always works is more difficult. You can’t do it using specific integers, because 
you’d have to try an infinite number of cases one at a time. You have to use airtight logic. 
That’s what proofs are all about.



Add, then subtract

The associative law can work indirectly when subtraction is involved, if you change every sub-
traction into addition. It’s the same trick as with the commutative law. For any three integers 
a, b, and c

 (a + b) − c = (a + b) + (−c)
 = a + [b + (−c)]
 = a + (b − c)

We use square parentheses, called brackets, to indicate a grouping with another group-
ing inside. This looks messy, but a little junk is easy to tolerate when you realize that 
we’ve just proved something significant. We’ve shown that you can always use the 
associative law with mixed signs when the first operation is addition and the second 
one is subtraction.

Subtract, then add

Now let’s look the general situation where we have seen that direct application of the asso-
ciative law does not always work. How can we modify it to make it work? We can rewrite 
an expression where the first operation is subtraction and the second one is addition, so it 
becomes all addition, like this:

 (a − b) + c = [a + (−b)] + c

We can use the associative law for addition to get

a + [(−b) + c]

Now we can use the commutative law for addition inside the brackets to get

a + [c + (−b)]

We can simplify this to

a + (c − b)

Now we know that when the first operation is subtraction and the second is addition,

(a − b) + c = a + (c − b)

Subtract, then subtract again

Finally, let’s explore the situation where we subtract twice. We can rearrange an expression like 
that as follows:

(a − b) − c = [a + (−b)] + (−c)
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We can use the associative law for addition to get

a + [(−b) + (−c)]

We can simplify this to

a + (−b − c)

Now we know that when both operations are subtraction,

(a − b) − c = a + (−b − c)

Are you confused?
We haven’t started to dissect the anatomy of multiplication yet. That will come in the next chapter. But 
you’ve had basic multiplication in your arithmetic classes, so let’s “cheat” for a moment and take advantage 
of that. What are you actually doing when you change c to −c? Here’s an alternative to the “number reflec-
tor” idea. When you want to find the negative (also called its additive inverse) of any integer, multiply by 
−1. It works like this:

c × (−1) = −c

and

−c × (−1) = c

Here’s a challenge!
Based on the commutative law for the sum of two integers and the associative law for the sum of three 
integers, show that for any three integers a, b, and c

a + b + c = c + b + a

Solution
If you can manipulate the left-hand side of this equation to get the expression on the right-hand side, that’s 
good enough. Because these statements are not very complicated and the proof is not too hard, you can 
write it as a table with statements on the left and reasons on the right. Table 4-1 shows how it’s done. This 
is a simple statements/reasons (S/R) proof.



Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Evaluate and compare these two sums:
a = |−3 + 4 + (−5) + 6|

  and
b = |−3| + |4| + |−5| + |6|

  What general fact can you deduce from the results?

 2.  To illustrate the importance of the placement of parentheses in a mixed sum and 
difference, evaluate the following two expressions. In long strings of sums and 
differences, you should first perform the operations inside the parentheses from left to 
right, and then perform the operations outside the parentheses from left to right. Here 
are the expressions:

(3 + 5) − (7 + 9) − (11 + 13) − 15
  and

3 + (5 − 7) + (9 − 11) + (13 − 15)

 3.  Using the rules explained in the previous exercise, how should you evaluate the string of 
sums and differences if there are no parentheses at all? Here it is:

3 + 5 − 7 + 9 − 11 + 13 − 15

 4.  Suppose someone tells you that there was a significant trend in the mid-winter average 
temperatures in the town of Hoodopolis during the period 1998 through 2005. You 
want to find out if this is true. You come across some old heating bills from the utility 
company that show how much warmer or cooler a given month was, on the average, 

Table 4-1. Here is a proof that shows how you can reverse 
the order in which three integers a, b, and c are added, and 
get the same sum. As you read down the left-hand column, 

each statement is equal to all the statements above it.

Statements  Reasons

a + b + c Begin here
a + (b + c) Group the second two integers
a + (c + b) Commutative law for the sum of b and c
(c + b) + a Commutative law for the sum of a and (c + b)
c + b + a Ungroup the first two integers
Q.E.D.  Latin Quod erat demonstradum, translated into

  English as “Which was to be proved”
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compared to the same month in the previous year. You look at the records for January 
and find out that in Hoodopolis,

• January 2005 averaged 5 degrees cooler than January 2004.
• January 2004 averaged 2 degrees warmer than January 2003.
• January 2003 averaged 1 degree cooler than January 2002.
• January 2002 averaged 7 degrees warmer than January 2001.
• January 2001 averaged the same temperature as January 2000.
• January 2000 averaged 6 degrees cooler than January 1999.
• January 1999 averaged 3 degrees warmer than January 1998.

   What was the difference in the average temperature between January 2005 and 
January 1998 in the town of Hoodopolis?

 5. Show at least one situation where can you say that
a − b = b − a

  Don’t use the trivial case where a and b are both equal to 0.

 6. Show at least one situation where you can say that
(a − b) + c = a − (b + c)

  where a, b, and c are integers. Don’t use the trivial case where a, b, and c are all 0.

 7. Show at least one situation where you say that
(a − b) − c = a − (b − c)

  where a, b, and c are integers. Don’t use the trivial case where a, b, and c are all 0.

 8.  Based on the commutative law for the sum of two integers and the associative law for 
the sum of three integers, construct an S/R proof showing that for any four integers 
a, b, c, and d

a + b + c + d = d + c + b + a
   Here’s a hint: use the solution to the last “challenge” problem in this chapter as a 

shortcut. A previously proved fact, when used to prove something new, is called a 
lemma.

 9.  Based on the associative law for the sum of three integers, prove that for any four 
integers a, b, c, and d

(a + b + c) + d = a + (b + c + d )
   Do this in narrative form. Don’t use the S/R table method. Here’s a hint: “zip up” the 

sum b + c, and call it by another name.

 10. Simplify and compare these expressions:
(a + b − c) + (a − b + c)

  and
a + (b − c) + (a − b) + c



In this chapter we’ll explore the mechanics of multiplication and division. Multiplication is a 
shortcut for repeated addition. Division is something like “undoing” multiplication. These two 
operations, like addition and subtraction, obey certain rules as long as they aren’t “stretched” 
too far!

Moving Out and In
Think of the number line again, where the integers are points above and below a “number 
reflector” plane that goes through 0. As you move upward, the numerical value increases; as 
you go downward, it decreases. As you get farther in either direction from the “number reflec-
tor,” the absolute value increases.

To multiply, move out

When you add an integer to itself, you multiply it by 2. When you add an integer to itself twice, 
you multiply it by 3. When you add an integer to itself 3 times, you multiply it by 4. You can keep 
going with this. Here’s an example of what happens when the integer is positive:

5 + 5 = 5 × 2
5 + 5 + 5 = 5 × 3

5 + 5 + 5 + 5 = 5 × 4

Here’s what happens when the integer is negative:

−5 + (−5) = −5 × 2
−5 + (−5) + (−5) = −5 × 3

−5 + (−5) + (−5) + (−5) = −5 × 4
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Suppose p is an integer and n is a positive integer. From the above facts, you can see 
that whenever you multiply p by n, you add p to itself (n − 1) times. On the number line, 
you move away from the “number reflector” (n − 1) times by a distance equal to the abso-
lute value of p. If your starting integer p is above the “number reflector,” you move up; if 
your starting integer p is below the “number reflector,” you move down. Figure 5-1 illustrates 
how this works for 2 × 3 and −2 × 5. The “number reflector” is shown as a horizontal, 
dashed line.

What if n is negative instead of positive? To multiply p by n in this situation, first take the 
additive inverse (negative) of your starting integer p, and then move away from the “number 
reflector” |n | − 1 times by a distance equal to the absolute value of p. Figure 5-2 shows how 
this works for 2 × (−3) and −2 × (−5).

When you multiply two quantities, you get a product. In a multiplication problem, the 
first quantity (the one to be multiplied) is sometimes called the multiplicand, and the second 
quantity (the one you are multiplying by) is sometimes called the multiplier. More often, they 
are both called factors.

To divide, move in

Now imagine the multiplication process in reverse. For examples, look at Figs. 5-1 and 5-2 
and think backward!

In Fig. 5-1, suppose you start with 6 and you want to divide it by 3. You reduce your 
distance from the “number reflector” by a factor of 3 but stay on the same side, so you end up 
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Add to itself 2 times
Get 3 times as far from 0

Multiply by 5
Add to itself 4 times

Get 5 times as far from 0

Figure 5-1  On top, 2 is multiplied by 3. On the bottom, 
−2 is multiplied by 5. To avoid clutter, only 
the even-integer points are shown on the 
number line.



at the point representing 2. If you start with −10 and divide by 5, you cut your distance from 
the “number reflector” by a factor of 5 and stay on the same side, so you end up at −2.

Dividing by a negative number is trickier. In Fig. 5-2, suppose you start with −6 and 
divide it by −3. You jump to the other side of the “number reflector” and then reduce your 
distance from it by a factor of 3, finishing at 2. If you start with 10 and divide by −5, you 
jump to the other side of the “number reflector” and then cut your distance from it by a factor 
of 5, finishing at −2.

In these situations, the integers divide each other “cleanly” without remainders. Remain-
ders occur when one nonzero integer divides another integer and the result is not an integer. 
“Messy division” produces fractions, which we’ll study in Chap. 6. An example is the division 
of 5 by 3. Another example is the division of −7 by −12.

You can add, subtract, or multiply any two integers and always end up with another inte-
ger. In math jargon, the operations of addition, subtraction, and multiplication are closed over 
the set of integers. When you do a division problem with integers, you don’t always get another 
integer. Therefore, the operation of division is not closed over the set of integers.

When you divide a quantity by another quantity, you get a quotient. Sometimes it is called 
a ratio. In a division problem, the first number is sometimes called the dividend, and the sec-
ond number is sometimes called the divisor.

Division by 0

What happens if you try to divide an integer by 0? You don’t get any integer, or any other 
known type of number. Look at this problem “inside-out.” What must you multiply 0 by if 
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Take additive inverse
Add to itself 4 times
Get 5 times as far from 0
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Get 3 times as far from 0
Add to itself 2 times

Figure 5-2  At lower left, 2 is multiplied by −3. At upper right, 
−2 is multiplied by −5. To avoid clutter, only the 
even-integer points are shown on the number line.



you want to get, say, 3? How many times must you add 0 to itself to get anything but 0? No 
integer can do this trick. In fact, no known number solves this problem.

Most mathematicians will tell you that division by 0 is “not defined.” That’s what my 
7th-grade math teacher kept saying, and I pestered her about it. I would ask, “Why not?” or 
retort, “Let’s define it, then!” She would repeat herself, “Division by 0 is not defined.” I did 
not take her seriously, so I started trying to make division by 0 work. I never came up with a 
well-defined way to do it. But I came pretty close, and had a lot of fun trying.

Are you confused?
Have you heard that dividing a positive integer by 0 gives you “infinity”? If not, you probably will some 
day. Be skeptical! The first thing you must do to figure out if it’s really true is to define “infinity.” That’s not 
easy. No meaningful, enduring definition of “infinity” produced by mathematicians has ever had anything 
to do with division by 0.

Again, look at the problem “inside-out.” If you want to multiply 0 by any positive integer n, you must 
add 0 to itself (n − 1) times. No matter how large you make n, you always get 0 when you add it to itself 
(n − 1) times. Why should adding 0 to itself forever make any difference? It’s tempting to suppose that it 
might, but that doesn’t prove that it will. In mathematics, we need proof before we can claim something 
is true!

Manipulating equations

Whenever we add or subtract a certain quantity to or from both sides of the equation, we still 
have a valid equation. The same is true if we multiply both sides of an equation by a certain 
quantity, or divide either side by a certain quantity other than 0.

The quantity you add, subtract, or multiply by can be a number, a variable, or a compli-
cated expression, as long as it is the same for the left-hand side of the equation as for the right-
hand side. If you divide both sides of an equation by anything, it’s best to stick to nonzero 
numbers. If you divide both sides of an equation by a variable or an expression containing a 
variable, you can get into trouble, as you’ll see in Chap. 11.

Keep these rules in mind. That way, you won’t get confused later on when we do some-
thing like divide both sides of an equation by 999, or multiply both sides by (a + b). The fact 
that we can do these things makes solving equations and proving various facts far easier than 
they would be otherwise.

Here’s a challenge!
In terms of the number line and displacements, show what happens when you multiply the integer −1
over and over, endlessly, by −2.

Solution
Figure 5-3 illustrates this process. Because the multiplier is negative, we jump to the opposite side of 
the “number reflector” each time we multiply. Then the result becomes a new multiplicand. Because the 
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absolute value of the multiplier is 2, we double our distance from the “number reflector” with each jump. 
Expressed as equations, we have

 −1 × (−2) = 2

 2 × (−2) = −4

 −4 × (−2) = 8

 8 × (−2) = −16

 −16 × (−2) = 32

 ↓
 and so on, forever
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Figure 5-3  Here is what happens when we start at 
−1 and multiply by −2 over and over. 
We jump back and forth across the 
“number reflector,” doubling our 
distance from it with each jump. To 
avoid clutter, only the even-integer 
points are shown on the number line.



Identity, Grouping, and Signs
Let’s review how signs work in multiplication and division. Then we’ll proceed to the 
three major laws that govern the interplay between multiplication, division, addition, 
and subtraction.

Notation for multiplication

When you want to multiply two numbers, you can use the familiar “times sign” and put the 
numerals for the factors on either side. This symbol (×) looks like a tilted cross or a letter “x.” 
Another symbol you’ll often see is the small, elevated dot (·). When a number is multiplied 
by a variable, or when a variable is multiplied by another variable, you’ll see their symbols run 
together without any space between. Parentheses are placed around complicated expressions 
when they are multiplied by each other.

• When you see 3 × 7, it means 3 times 7.
• When you see −3·7, it means −3 times 7.
• When you see −4a, it means −4 times a.
• When you see ab, it means a times b.
• When you see abc, it means a times b times c.
• When you see a(b − c), it means a times (b − c).
• When you see (a + b)(c + d ), it means (a + b) times (c + d ).

Notation for division

In this book, we’ll use the forward slash (/) to indicate division. In arithmetic, you some-
times see the dash with two dots (÷), but that’s rarely used in algebra. When expressions are 
complicated, the dividend (the number you want to divide) can be placed on top of a long 
horizontal line, and the divisor (the number you divide by) is placed underneath. As with 
multiplication, parentheses are placed around complicated expressions when they are divided 
by each other.

• When you see 8/2, it means 8 divided by 2.
• When you see −4/a, it means −4 divided by a.
• When you see a/(−4), it means a divided by −4.
• When you see a/b, it means a divided by b.
• When you see a/(b − c), it means a divided by (b − c).
• When you see (a + b)/(c + d ), it means (a + b) divided by (c + d ).

The identity element

You can multiply or divide any integer by 1, and it won’t change the value. Because multiply-
ing or dividing by 1 always gives you the same number again, 1 is called the multiplicative 
identity element. (For some reason I’ve never heard it called the “divisive identity element,” but 
technically this term is okay.) For any integer a

a1 = a
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and

a/1 = a

The sign-changing element

When you multiply or divide any integer by −1, you reverse the sign but do not change the 
absolute value. A positive integer becomes negative, and a negative integer becomes positive, 
but the distance from 0 on the integer line stays the same. For any integer a

a(−1) = −a

and

a/(−1) = −a

Conversely,

−a(−1) = a

and

−a/(−1) = a

Note that a(−1) here means a times −1, not a minus 1. Those parentheses are important! The inte-
ger −1 can be called the multiplicative sign-changing element or the divisive sign-changing element.

Parentheses in simple products and quotients

Look at these expressions:

3 × (−5) = a

and

15/(−3) = b

If you don’t write the parentheses, the above expressions are

3 × −5 = a

and

15/−3 = b

Expressions like these might be clear enough to you, but they would confuse some people. 
Don’t be afraid to add parentheses to an expression if you think they will prevent ambiguity. 
Just be sure that for every opening parenthesis you put in, you include a corresponding closing 
parenthesis later in the expression.
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Signs in multiplication and division

Here is a set of rules for multiplication and division by any integer except −1, 0, or 1. Remem-
ber that “more” always means more positive, or moving upward on the integer line, and “less” 
always means more negative, or moving down. Study these rules carefully. If any of them 
confuse you, “plug in” some actual numbers and test them.

• When you multiply a positive integer by 2 or more, the result stays positive and the 
absolute value increases (it gets farther from 0).

• When you divide a positive integer by 2 or more, the result stays positive and the abso-
lute value decreases (it gets closer to 0).

• When you multiply a negative integer by 2 or more, the result stays negative and the 
absolute value increases (it gets farther from 0).

• When you divide a negative integer by 2 or more, the result stays negative and the 
absolute value decreases (it gets closer to 0).

• When you multiply a positive integer by −2 or less, the result becomes negative and 
the absolute value increases (it gets farther from 0).

• When you divide a positive integer by −2 or less, the result becomes negative and the 
absolute value decreases (it gets closer to 0).

• When you multiply a negative integer by −2 or less, the result becomes positive and 
the absolute value increases (it gets farther from 0).

• When you divide a negative integer by −2 or less, the result becomes positive and the 
absolute value decreases (it gets closer to 0).

“Homogenize” these!

You would do well to memorize (or, as my dad would always say, “homogenize”) two general 
facts. For any two integers a and b

a × (−b) = −ab = −(ab)

and

a/(−b) = −a/b = −(a/b)

Are you confused?
Suppose you see an expression with addition, subtraction, multiplication, and division all mixed up, but 
with no parentheses. Here’s an example.

2 + 48/4 × 6 − 2 × 5 + 12/2 × 2 − 5

You’ll get an answer that depends on which operations you do first. Do not approach a mixed-operation 
problem like this by simply grinding out the arithmetic from left to right. You must use certain rules of 
precedence. In this order:

• Group all the multiplications
• Do all the multiplications from left to right
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• Group all the divisions
• Do all the divisions from left to right
• Convert all the subtractions to negative additions
• Do the additions from left to right

When you use these rules correctly, the above problem simplifies as shown in Table 5-1. As you read down-
ward, each expression is equal to the one above it.

Here’s a challenge!
Start with the integer 5, multiply by −4, then divide that result by −2, then multiply that result by 8, then 
divide that result by −20, and finally divide that result by −4. What do you end up with?

Solution
We can break this down step-by-step, paying careful attention to signs and using parentheses when we 
need them:

 5 × (−4) = −20

 −20/(−2) = 10

 10 × 8 = 80

 80/(−20) = −4

 −4/(−4) = 1

The Commutative Law for Multiplication
In basic arithmetic, you learned that you can multiply numbers in any order and always get 
the same product. But you can’t expect to do the same thing if there is division anywhere in 
the process.
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Table 5-1. This is a step-by-step simplification of a complicated expression 
containing addition, subtraction, multiplication, and division without any 
parentheses to indicate the order in which the operations should be done. 
As you read down the left-hand column, each statement is equal to all the 

statements above it.

Statements  Reasons

2 + 48 / 4 × 6 − 2 × 5 + 12 / 2 × 2 − 5 Begin here
2 + 48 / (4 × 6) − (2 × 5) + 12 / (2 × 2) − 5 Group all the multiplications
2 + 48 / 24 − 10 + 12 / 4 − 5 Do all the multiplications
2 + (48/24) − 10 + (12/4) − 5 Group all the divisions
2 + 2 − 10 + 3 − 5 Do all the divisions
2 + 2 + (−10) + 3 + (−5)  Convert all the subtractions to negative additions
−8 Do the additions from left to right



It works when you multiply

The fact that you can multiply two integers in either order and get the same result is called the 
commutative law for multiplication. For any two integers a and b

ab = ba

If both factors have the same sign (positive or negative), the product is positive. If the factors 
have opposite signs, the product is negative. The commutative law also works if there are three 
or more factors. You can rearrange them in any order you want. If there are an even number 
of negative factors, the product is positive. If there are an odd number of negative factors, the 
product is negative.

It fails when you divide

When you divide an integer by another integer, the order is important. If you divide 20 by 4, 
you get 5. But if you divide 4 by 20, you don’t get 5. You don’t even get an integer. A more 
dramatic example is the division of 0 by any other integer. If you divide 0 by −3, you get 0. 
But if you divide −3 by 0, you get an undefined quantity! 

Cross-multiplication

Here’s a fact that you will find useful in algebra. It’s called the rule of cross-multiplication. Sup-
pose you have two ratios of integers, a /b and c /d, and you’re told that they’re equal. You’re also 
assured that neither b nor d is equal to 0. You write

a /b = c /d

You can multiply the dividend on the left-hand side of this equation (here, that’s a) by 
the divisor on the right-hand side (d ), and get the same result as when you multiply the 
divisor on the left-hand side (b) by the dividend on the right-hand side (c). In formal 
terms,

If a /b = c /d, then ad = bc

This rule works in the reverse sense, too. For any four integers a, b, c, and d, where b is not 
equal to 0 (written b ≠ 0) and d ≠ 0,

If ad = bc, then a /b = c /d

When a rule works in both logical directions, mathematicians use the expression “if and only 
if ” and abbreviate it as “iff.” Now we know that for any four integers a, b, c, and d, where 
b ≠ 0 and d ≠ 0, 

ad = bc iff a /b = c /d
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Are you confused?
Suppose you see an expression where you have to divide repeatedly, with no parentheses telling you which 
division to do first. Here is an example:

200/2/5/4

In a case like this, proceed from left to right. Here, that means you should take 200 and divide it by 2, 
getting 100. Then divide 100 by 5, getting 20. Finally, divide 20 by 4, getting 5.

Here’s a challenge!
Under what circumstances can we divide an integer a by an integer b, and get the same quotient (or ratio) 
as when we divide b by a? Assume that a ≠ 0 and b ≠ 0.

Solution
We have two integers a and b, and we are told that

a /b = b /a

This equation is always true when a and b are the same. In that case, we can substitute a for b and get

a /a = a /a

which simplifies to1 = 1. That’s trivial!
Now suppose that a and b are additive inverses. Therefore, −a = b. Here, we can substitute −a for b in 

the original equation and get

a /(−a) = (−a)/a

which simplifies to −1 = −1. We know this because it is an application of one of those two facts we’re sup-
posed to have “homogenized” earlier in this chapter.
 What’s the verdict? If we have two nonzero integers a and b whose absolute values are the same, meaning 
that they’re either identical or are additive inverses of each other, then a/b = b/a. In symbols, we can write

If |a| = |b|, then a /b = b /a

The Associative Law for Multiplication
Another important rule that applies to multiplication involves how the factors are grouped 
when you have three or more of them. You can lump the factors together any way you want, 
and you’ll always end up with the same product. The simplest case, called the associative law 
for multiplication, involves a product of three factors.
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It works when you multiply

Here’s how a mathematician would formally state the associative law in its most basic form. 
For any three integers a, b, and c

 (ab)c = a(bc)

For instance:

(3 × 5) × 2 = 15 × 2 = 30

and

3 × (5 × 2) = 3 × 10 = 30

This works whether the numbers are positive, negative, or 0. It also works if there are more 
than three numbers in a product, as long as there aren’t infinitely many.

It fails when you divide

In division, as in subtraction, the way in which you group the integers or variables is impor-
tant. Consider this:

(16/4)/2 = 4/2 = 2

but

16/(4/2) = 16/2 = 8

For any three integers a, b, and c, it is not necessarily true that

(a /b)/c = a /(b /c)

The associative law hardly ever works with division.

Are you confused?
Look at another expression where we have to divide more than once, and see what happens when we insert 
parentheses in different places. Let’s try this:

4,000/40/10/5

Going straightaway from left to right, we get 4,000/40 = 100, then 100/10 = 10, and finally 10/5 = 2. 
Now let’s think of it this way:

(4,000/40) / (10/5)
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In this case, it simplifies to 100/2 = 50. Now let’s try this:

4,000 / (40/10) / 5

We do the division in parentheses first, getting

4,000/4/5

Starting at the left, we get 4,000/4 = 1,000. Then dividing 1,000 by 5 gives us 200.

Here’s a challenge!
Here is a riddle that ought to get your brain running at full speed. Consider this infinite product:

1 × (−1) × 1 × (−1) × 1 × (−1) × 1 × (−1) × ···

If we start multiplying from left to right, we get a sequence of products that come out like this, in order:

1, −1, −1, 1, 1, −1, −1, 1, ...

The products switch back and forth between 1 and −1, endlessly. The final product therefore cannot 
be defined. No integer can have two values “at the same time.” But suppose we try to apply the com-
mutative law to the original expression infinitely many times! We can then rearrange the factors to 
get this:

 (−1) × (−1) × 1 × 1 × (−1) × (−1) × 1 × 1 × ···

Now imagine that we try to group the integers in pairs, infinitely many times, like this:

 [(−1) × (−1)] × [1 × 1] × [(−1) × (−1)] × [1 × 1] × ···

That gives us

1 × 1 × 1 × 1 × ···

The sequence of products in this case is

1, 1, 1, 1, ...

Now it seems as if the product of the whole thing is equal to 1! What’s going on?

Solution
We derived a contradiction here because we improperly used the commutative and grouping laws. First, 
we tried to apply these rules to a product that is undefined in its most basic form. Second, we acted as if 
these rules can be used in a single expression infinitely many times, without really knowing if we can get 
away with such tricks. Evidently we can’t!

The Associative Law for Multiplication  77



Here’s another challenge!
Based on the commutative law for multiplication of two integers, and on the associative law for multiplica-
tion of three integers, show that for any three integers a, b, and c

abc = cba

Solution
This works out just like the “challenge” at the end of Chap. 4. Simply change all the instances of addition 
to multiplication. Table 5-2 is an S/R proof.

The Distributive Laws
When you come across a sum or difference that is multiplied by a single number or variable, 
you will sometimes want to expand it into a sum or difference of products. To do this, you 
can use the distributive laws.

Multiplication over addition

Suppose you have three integers a, b, and c arranged so that you must multiply a by the sum of 
b and c. The left-hand distributive law of multiplication over addition tells you that this is equal 
to the product ab plus the product bc. This comes out simpler if you write it down:

a(b + c) = ab + ac

Now imagine multiplying the sum of a and b by c. The right-hand distributive law of 
multiplication over addition says that

(a + b)c = ac + bc

Table 5-2. Here is a proof that shows how you can reverse the order 
in which three integers a, b, and c are multiplied, and get the same 
product. As you read down the left-hand column, each statement is 

equal to all the statements above it.

Statements  Reasons

abc Begin here
a(bc) Group the second two integers
a(cb) Commutative law for the product of b and c
(cb)a Commutative law for the product of a and (cb)
cba Ungroup the first two integers
Q.E.D. Mission accomplished
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Multiplication over subtraction

The distributive laws also work with subtraction. For any three integers a, b, and c

a(b − c) = ab − ac

and

(a − b)c = ac − bc

It’s not hard to show how these follow from the laws for addition. If you want to do a rigor-
ous job, the process is rather long. Table 5-3 breaks the derivation down into an S/R process, 
showing every logical step, for the left-hand distributive law of multiplication over subtraction.
If you want to do a proof for the right-hand distributive law of multiplication over subtraction,
consider it a bonus exercise!

The left-hand law fails with division

The left-hand distributive laws do not work for division over addition or for division over 
subtraction. To see why, all you have to do is produce examples of failure. That’s easy! Con-
sider this:

24/(4 + 2) = 24/6 = 4

but

24/4 + 24/2 = 6 + 12 = 18

And this:

24/(4 − 2) = 24/2 = 12
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Table 5-3. Derivation of the left-hand distributive law for multiplication over 
subtraction. As you read down, each statement is equal to all the statements above it. 

Warning: Don’t mistake the expression (–1) for the subtraction of 1! 
The parentheses emphasize that –1 is a factor in a product.

Statements  Reasons

a(b − c) Begin here
a[b + (−c)] Convert the subtraction to the addition of a negative
ab + a(−c) Left-hand distributive law of multiplication over addition
ab + ac(−1) Principle of the sign-changing element
ab + a(−1)c Commutative law for multiplication
ab + (−1)ac Commutative law for multiplication (again)
ab + (−ac) Principle of sign-changing element (the other way around)
ab − ac Convert the addition of a negative to a subtraction
Q.E.D. Mission accomplished



but

24/4 − 24/2 = 6 − 12 = −6

The right-hand law works with division

If you have a sum or difference as the dividend and the single number as the divisor, you can 
use the distributive law for division over addition or division over subtraction. If a and b are 
any integers, and if c is any nonzero integer, then

 (a + b)/c = a /c + b /c

and

(a − b)/c = a /c − b /c

Are you confused?
To help get rid of possible confusion about how the distributive laws operate when integers are negative, 
try an example where a = −2, b = −3, and c = −4. First, work out the expression where you multiply 
a times (b + c):

−2 × [−3 + (−4)] = −2 × (−7) = 14

Now work out the expression where you add ab and ac:

 [−2 × (−3)] + [−2 × (−4)] = 6 + 8 = 14

Here’s a challenge!
With the aid of the commutative and distributive laws, prove that for any four integers a, b, c, and d

(a + b)(c + d ) = ac + ad + bc + bd

Solution
Let’s do this as a narrative. Even though S/R proofs look neat, narrative proofs are often preferred by 
mathematicians. We’ll start with the left-hand side of the above equation:

(a + b)(c + d )

Let’s think of the sum a + b as a single unit, and call it e. Now we can rewrite this as

e (c + d )

The left-hand distributive law for multiplication over addition allows us to rewrite this as

ec + ed
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Next, we expand e back into its original form and substitute it into the above expression twice, getting

(a + b)c + (a + b)d

We can apply the right-hand distributive law twice, and rewrite this as

ac + bc + ad + bd

Now we employ the commutative law in a generalized way, obtaining

ac + ad + bc + bd

We know this is equal to the expression we began with, because we just got done “morphing” it using 
known tactics, one step at a time. Therefore

 (a + b)(c + d ) = ac + ad + bc + bd

Q.E.D.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. How does the absolute value change if you multiply an integer by −3?

 2.  How does the absolute value change if you start with an integer and multiply by −3
over and over without end?

 3. Evaluate the following expression:
4 + 32 / 8 × (−2) + 20 / 5 / 2 − 8

 4. Do an S/R proof showing that for any four integers a, b, c, and d
abcd = dcba

   Here’s a hint: you solved a problem like this for addition in Chap. 4. This proof 
proceeds in the same way.

 5.  Start with the integer −15, multiply by −45, then divide that result by −25, then 
multiply that result by −9, then divide that result by −81, and finally multiply that 
result by −5. What do you end up with?

 6. Show at least one situation where you can say that
a /(b /c) = (a /b)/c

   where a, b, and c are integers. Do not use the trivial case a = 1, b = 1, and c = 1. Find 
something more interesting!
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 7. Show at least one situation where you can say that
(ab)/c = a(b /c)

   where a, b, and c are integers. Do not use the trivial case a = 1, b = 1, and c = 1. Find 
something more interesting!

 8.  Suppose you have learned the left-hand distributive law for multiplication over 
addition, but you have never heard about the right-hand version. Show that for any 
three integers n, m, and p, the right-hand distributive law for multiplication over 
addition will always work:

(m + n)p = mp + np
  Use the narrative form, not an S/R table.

 9. Construct an S/R table showing that for any two integers d and g
−(d + g) = −d − g

 10.  Prove that when you want to find the negative of the subtraction of one quantity from 
another, you can simply switch the order of the subtraction. To do this, put together an 
S/R table showing that for any two integers h and k

−(h − k) = k − h



You can always divide an integer by another integer, except when the divisor is 0. Then you 
get a fraction. A fraction might not be an integer, but it’s still a number.

“Messy” Quotients
Figure 6-1 shows how you move around on the number line when you divide 3 by −2. First, 
you take the additive inverse of 3, because you’re dividing by a negative quantity. That puts 
you at the point corresponding to −3. Then you reduce your distance from 0 by a factor equal 
to the absolute value of the divisor. That absolute value is 2, so you must move halfway from 
−3 to 0. That puts you at a point between −1 and −2.

Remainders

In the situation of Fig. 6-1, the finishing point is midway between the point for −1 and the 
point for −2. When you divide 3 by −2, you get −1 with a remainder 1. In this context, the 
word “remainder” means “portion left over.”

The divisor in this situation is −2, so you have a remainder of 1/(−2), which has the same 
numerical value as −1/2. The remainder is always added to the whole-number part of the 
quotient to get the final version of the quotient. Here, the arithmetic works out like this:

 3/(−2) = −1 + (−1/2)
 = −(1 + 1/2)
 = −1-1/2

The last quantity above is read “negative one and a half.” The whole-number part is separated 
from the fractional part by a dash. This dash is not a minus sign! (The minus sign is much 
longer.) Some writers leave a space between the whole-number part and the fractional part of 
an expression like this. But that can also be confusing, because it could make the above result 
look like −11/2. That would mean −5-1/2, not −1-1/2.
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84 Fractions Built of Integers

Improper or proper?

In a fraction, the dividend is called the numerator, and the divisor is called the denominator. In 
the situation shown by Fig. 6-1, the numerator you start out with is 3, and the denominator 
is −2. You can change this so the numerator is −3 with a denominator of 2. That’s easier to 
understand. You can always take the additive inverse of both the numerator and denominator 
in a fraction, and you’ll still have the same numerical value.

When the absolute value of the numerator in a fraction is larger than, or equal to, the 
absolute value of the denominator, some people call it an improper fraction. There’s nothing 
really inappropriate about this type of fraction, but in everyday usage, such a fraction can seem 
bizarre. No one ever says anything like, “It’s 7/3 times as far to Happyville as it is to Blues-
dale.” Instead they would say, “It’s 2-1/3 times as far to Happyville as it is to Bluesdale.”

When the numerator in a fraction is an exact integer multiple of the denominator, the 
fraction divides out to a plain integer. Otherwise, an improper fraction can always be changed 
to an integer plus or minus a fraction. You divide the numerator by the denominator, get-
ting the whole-integer part. Then you divide the remainder by the denominator to get the 
fractional part.

When the absolute value of the numerator in a fraction is less than the absolute value 
of the denominator, you have a proper fraction. In this context, the word “proper” does not 
imply anything more technically acceptable than “improper.” It means that the fraction can’t 
be changed into an integer plus or minus a fraction. A proper fraction can also be called a 
simple fraction.
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Start here

First, take additive
inverse

Finish here
Not at integer point

Next, cut distance
from 0 in half

Figure 6-1  When you divide 3 by −2 and follow the process on 
the number line, you end up at a point that doesn’t 
correspond to an integer.



Fraction or ratio?

Sometimes a fraction is called a ratio. These two terms are almost synonymous, but not quite. 
The term “fraction” implies that a particular quantity is a part of some other quantity. The 
term “ratio” expresses how two quantities are related in terms of their relative size or value.

Think of the Happyville-Bluesdale situation again. If you say, “It’s seven-thirds times as far 
to Happyville as it is to Bluesdale,” then you’re using 7/3 as a fraction. If you say, “The ratio 
of the distance to Happyville compared with the distance to Bluesdale is seven to three,” then 
you’re saying the same thing, but in a different way.

You can write, “The ratio of the distance to Happyville compared with the distance to 
Bluesdale is 7/3,” and read “7/3” as “seven to three.” If you want to make clear that you’re 
talking about a ratio, you can use a colon instead of a slash to separate the 7 and the 3. You 
would then write something like, “The Happyville-to-Bluesdale distance ratio is 7:3,” reading 
“7:3” as “seven to three.”

Ratios are always expressed in terms of two integers, one divided by the other. They’re 
never expressed as a whole integer plus or minus a proper fraction.

Are you confused?
Proper fractions are always larger than −1 but smaller than 1. A mathematician would use the “strictly 
larger than” inequality (>) and the “strictly smaller than” symbol (<) to express this fact. If q is a proper 
fraction, then

q > −1  and  q < 1

You can also write

−1 < q < 1

The proper-fraction interval

Figure 6-2 shows the “realm of proper fractions” on the number line. It contains the points for 
all possible fractions between, but not including, −1 and 1. The interval is shown as a shaded 
line. It’s gray (not black) for a subtle reason. The set of all proper fractions doesn’t account for 
all the geometric points above −1 and below 1. Within that range, there are numbers that can’t 
be expressed as fractions. The same thing is true everywhere along the number line. Ratios of 
integers can’t account for all the points on a true geometric line. You’ll learn more about that 
in Chap. 9.

You should also be acquainted with two other symbols. The “larger than or equal to” 
symbol looks like a “strictly larger than” symbol with a line under it (≥). The “smaller than 
or equal to” symbol looks like a “strictly smaller than” symbol with a line under it (≤). If you 
wanted to include −1 and 1 in the interval above, you would write

q ≥ −1  and  q ≤ 1

Alternatively, you could write

−1 ≤ q ≤ 1
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Here’s a challenge!
Suppose a car dealer tells you that a certain sports car has a top speed that’s “half again” as fast as the top 
speed of a certain pickup truck. What is the car’s top speed compared to the truck’s top speed, as a ratio of 
two integers? What is the truck’s top speed to the car’s top speed, as a ratio of two integers?

Solution
The term “half again” means “1-1/2 times as great.” The ratio of the car’s top speed to the truck’s top speed 
is therefore 1-1/2 to 1, or 3/2 to 1. But that’s not a ratio of two integers! The correct way to express the 
ratio is 3 to 2. You would write this as 3/2 or 3:2. When you want to express a ratio in the reverse sense, 
switch the numerator and the denominator. The ratio of the truck’s top speed to the car’s top speed is 2 to 3, 
which you can write as 2/3 or 2:3.

Technically, you can express both of these ratios in infinitely many other ways. In general, the ratio 
of the car’s highest speed (call it c) to the truck’s highest speed (call it t), expressed as a ratio between two 
integers, is

c /t = (3a)/(2a)

where a can be any integer except 0. The ratio of the truck’s highest speed to the car’s highest speed, in 
general, is

t /c = (2a)/(3a)

What if you want to specify the actual number of miles per hour that each vehicle can travel? Suppose the 
truck can go a maximum of 100 miles per hour on a straight, level road with no wind, and the car can 
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Figure 6-2  Proper fractions 
correspond to points 
between −1 and 1 on 
the number line. The 
open circles at −1 and 
1 indicate that they 
are not included in the 
interval.



go 150 miles per hour under the same conditions. You can then write the ratio of the car’s top speed to 
the truck’s top speed as 150/100 or 150:100. Conversely, the ratio of the truck’s top speed to the car’s top 
speed is 100/150 or 100:150. In these cases, a = 50 in the above equations:

c /t = (3 × 50)/(2 × 50)

and

t /c = (2 × 50)/(3 × 50)

“Reducing” a Fraction or Ratio
Any fraction or ratio can be expressed in countless ways, but one form is considered the most 
“elegant.” That’s the form in which the absolute values of the numerator and denominator are 
both as small as possible, and the denominator is positive. A fraction or ratio in this form is 
said to be in lowest terms or lowest form.

Negative denominators

A fraction with a negative denominator is okay in theory, but it’s hard to think about. You can 
probably imagine “negative three-fifths” without much trouble, but how about “three negative 
fifths”? That’s tough for almost everybody. Why bother with such ugly fractions? Both of the 
fractions or ratios −3/5 and 3/(−5) have the same numerical value. Why not use the one that 
makes more sense?

When you see a fraction or ratio with a negative denominator, you can multiply both the 
numerator and the denominator by −1. That will turn the denominator positive while mul-
tiplying the value of the entire fraction by −1/(−1). Of course, −1/(−1) is equal to 1, which 
is the multiplicative identity element. So you end up with the same number in a form that is 
easier to comprehend.

Finding common factors

When a fraction is not in lowest terms, it means that the numerator and denominator can 
both be divided by at least one integer, called a common factor, and no remainder will be left in 
either case. For example, 6/10 is not in lowest terms. We can divide both the numerator and 
denominator by 2 and get 3/5:

(6/2)/(10/2) = 3/5

If we start with −6/(−10), we can divide both the numerator and the denominator by −2 and 
get 3/5 again:

[−6/(−2)]/[−10/(−2)] = 3/5

If we divide both the numerator and the denominator of a fraction by the same integer and 
get integers in both places, we have the same fraction in a lower form.
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Getting the lowest form

Even after we have reduced a fraction to a lower form, we might not have it in lowest terms. 
We can always get the lowest form if we are willing to go through a rather tedious process. A 
mathematician might call this the “brute-force approach.” It isn’t elegant but it always works, 
and we don’t need any intuition to grind it out.

We start by factoring both the numerator and denominator into products of primes. If 
the original numerator is negative, we attach an extra “factor” of −1 to its product of primes, 
making sure all the prime factors are positive. We do the same thing with the denominator if 
it is negative. Once we have factored both the numerator and the denominator into products 
of primes, we look at those products closely. If the same prime appears in both the numerator 
and the denominator, then that prime is a common prime factor. We remove all the common 
prime factors from both the numerator and denominator. That leaves us with a smaller prod-
uct of primes in the numerator, and a completely different product of primes in the denomi-
nator. We multiply all the factors in the numerator together, and do the same thing with the 
factors in the denominator. If we end up with a negative denominator, we multiply both the 
numerator and the denominator by −1.

Let’s reduce the fraction 210/(−390) to lowest terms according to this set of rules. First, 
we convert both the numerator and the denominator into products of primes, and attach an 
extra “factor” of −1 to the denominator. The numerator then becomes

210 = 2 × 3 × 5 × 7

and the denominator becomes

390 = −1 × 2 × 3 × 5 × 13

Next, we use these products to build a fraction in which both the numerator and the denomi-
nator consist of prime factors, and the denominator has the extra “factor” −1:

(2 × 3 × 5 × 7) / (−1 × 2 × 3 × 5 × 13)

The common prime factors are 2, 3, and 5. We remove these from both the numerator and 
the denominator, getting

7/(−1 × 13)

That’s 7/(−13). We finish up by multiplying both the numerator and the denominator by −1
to obtain −7/13. This is the lowest form.

You can check to see that −7/13 = 210/(−390) by dividing 210 by −7 and −390 by 13. 
You’ll get the same integer, −30, in either case.

Are you confused?
When you try to factor the numerator and denominator of a fraction into products of primes, you might 
find that one or the other is already prime or is the negative of a prime. Maybe both are like that! This 
means the original fraction is in lowest form, except when the denominator is negative. If the denominator 
is negative, you simply change both the numerator and the denominator to their additive inverses.



Here’s a challenge!
Suppose that a, b, c, d, e, and f are all primes, and no two of them are the same. Reduce the following ratio 
to its lowest form:

−ab 3cde /(−ab2ce 3f   )

An exponent of 2 after any factor means that the factor appears twice. An exponent of 3 after any factor 
means that the factor appears three times. So, for example, b2 means bb, and b3 means bbb.

Solution
This problem is “messy” but not difficult. Let’s expand the numerator and the denominator out so we 
don’t have any exponents, and let’s put small elevated dots (they can represent multiplication, remember!) 
between the factors to make them easy to tell apart. Let’s write the numerator out in full, scratch a long 
dashed line underneath it, and then below that, write the denominator out in full. We get

−1 · a · b · b · b · c · d · e

------------------------------------------

−1 · a · b · b · c · e · e · e · f

Now it’s easy to see which factors are duplicated in the numerator and the denominator. They are −1, a,
b (twice), c, and e. When we remove these factors from the expressions above and below the dashed line, 
we get

b · d

------------------------------------------

e · e · f

This can be written as bd /e2f. The parentheses in the denominator are no longer needed because the minus 
sign is gone. This ratio is in lowest form because both the numerator and the denominator are products of 
primes, and none of the primes in the numerator and denominator are duplicates.

Multiplying and Dividing Fractions
When you want to multiply two fractions, the process is simple. Dividing one fraction by 
another is a little more complicated, but not much. Let’s look at how the processes work, using 
variables rather than numerical examples.

A fraction times a fraction

To multiply a fraction by another fraction, first be sure they are both “pure fractions.” That 
means they should both consist of an integer divided by a positive integer. The absolute value 
of the numerator doesn’t have to be smaller than the absolute value of the denominator, but 
one fraction should be of the form a /b and the other should be of the form c /d, where a and c
are integers (positive, negative, or 0), and b and d are positive integers. If either fraction has a 
negative denominator, you know what to do!
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Once you’ve “prepped” the fractions and you want to multiply them together, multiply 
the individual numerators to get the numerator of the product, and multiply the individual 
denominators to get the denominator of the product:

(a /b)(c /d ) = ac /bd

If either of the original fractions is not in lowest terms, the product won’t be either. You can 
reduce the product to lowest terms after you’ve multiplied two fractions, but you don’t neces-
sarily have to. If the multiplication is part of a multiple-step calculation process, you might as 
well wait until the entire process is complete before you worry about lowest terms.

The reciprocal of a fraction

The reciprocal of an integer, also called the multiplicative inverse, is the quantity by which you 
must multiply the original integer to get 1. The reciprocal of any integer is equal to 1 divided 
by that integer. That means 0 has no reciprocal, 1 is its own reciprocal, and −1 is also its own 
reciprocal. The reciprocal of every other integer lies somewhere between (but not including) 
0 and 1, or else somewhere between (but not including) −1 and 0.

Suppose you have a fraction or ratio a /b, where a and b are integers and neither of them is 
equal to 0. Then the reciprocal of a /b is equal to b /a. It’s easy to see why this is true when you 
multiply a /b times b /a. To do that, multiply the numerators and the denominators:

(a /b)(b /a) = ab /ba

The commutative law for multiplication can be used to switch around the factors in the 
denominator in the right-hand side of this equation, so you get

(a /b)(b /a) = ab /ab

Any nonzero quantity divided by itself is equal to 1. You have already been assured that a ≠ 0 
and b ≠ 0, so you know that ab ≠ 0. Therefore

(a /b)(b /a) = ab /ab = 1

This shows that the reciprocal of a /b is equal to b/a.

A fraction divided by a fraction

When you want to divide a fraction by another fraction, you can find the reciprocal of the 
second fraction (the divisor) and then multiply the first fraction (the dividend) by it. Suppose 
a is an integer, c is a nonzero integer, and b and d are positive integers. If you want to divide 
the quantity a /b by the quantity c /d , you can do it like this:

 (a /b)/(c /d ) = (a /b)(d /c)
= ad /bc

The original expression in this equation, (a /b)/(c /d ), is called a compound fraction. It gets that 
name from the fact that it’s a fraction made of other fractions! You can also think of it as a 
ratio of ratios.



Are you confused?
Any ratio of two integers, where the denominator is nonzero, is known as a rational number. The set of 
rational numbers, symbolized R, contains all such integer ratios that can exist.

It’s always possible to get any ratio of this kind into lowest terms. If you have some rational number r,
you can always convert it to the form m /p, where m is an integer and p is a positive integer, with the result-
ing fraction is in lowest terms. The term rational in this context comes from the word “ratio.”

If you stumble across the ratio (−6)/(−7), for example, you can write it as 6/7 and it represents the same 
number. If you see 6/(−7), you can rewrite it as −6/7.

Here’s a challenge!
Let a, b, c, d, e, and f all be nonzero integers. Suppose you start with a /b and divide it by c /d, and then 
divide that result by e /f. Write an expression for the final quotient.

Solution
Table 6-1 shows how this can be done, in the form of an S/R derivation.

Adding and Subtracting Fractions
When you want to add or subtract two integers, the process is straightforward. Fractions are 
more involved. You’ve probably had plenty of practice adding and subtracting fractions in 
arithmetic courses. Let’s look at these problems from a point of view a little closer to algebra, 
using variables instead of specific numerical examples.

Getting a common denominator

When you have two fractions that you want to add or subtract, you should be sure that neither 
fraction has a negative denominator. If one of them does, convert it into the equivalent form 
that has a positive denominator. Then you can modify the fractions so they have the same 
denominator, called the common denominator.

Suppose you have two fractions a /b and c /d in which a and c are integers, and b and d are 
positive integers. You want to add them, so you write

a /b + c /d

Table 6-1. Derivation of a formula for repeated division of fractions. As you read 
down the left-hand column, each statement is equal to all the statements above it.

Statements  Reasons

[(a /b)/(c /d )]/(e /f   ) Begin here
(ad /bc) / (e /f   ) Apply the formula for division of a /b by c /d
(g /h)/(e /f   )  Temporarily let ad = g and bc = h, and substitute the new names 

 in the previous expression
gf  /he Apply the formula for division of g /h by e /f
adf /bce Substitute ad for g and bc for h in the previous expression

Adding and Subtracting Fractions  91



92 Fractions Built of Integers

Now multiply a/b by d/d, which is equal to 1. Then multiply c/d by b/b, which is also equal to 1. 
(Remember, anything multiplied by 1 is equal to itself.) The above expression turns into this:

(a /b)(d /d ) + (c /d )(b /b)

Next, multiply the products of the fractions on each side of the plus sign, getting

ad /bd + cb /db

Now apply the commutative law for multiplication to the numerator cb and the denominator 
db, morphing the above expression into

ad /bd + bc /bd

This produces a sum of two fractions with the common denominator bd. These two fractions 
have the same numerical values as the original ones, but they are in “higher terms.”

A fraction plus another fraction

Once you’ve found a common denominator for a sum of two fractions, adding the fractions is 
easy. Simply add the numerators, and put them over the common denominator. In the above 
situation, then

ad /bd + bc /bd = (ad + bc)/bd

An equation such as this, which describes a general solution to a math problem, is called a 
formula. This particular formula is worth “homogenizing” into your brain! If a and c are inte-
gers, and b and d are positive integers, then

a /b + c /d = (ad + bc)/(bd )

If you’d rather see it in words, the process goes like this:

• Multiply the numerator of the first fraction by the denominator of the second.
• Multiply the denominator of the first fraction by the numerator of the second.
• Add these two products together.
• Divide this sum by the product of the denominators.

Are you confused?
When you add two fractions using the above method, the result might not be in lowest terms. As a final 
step in the addition of two fractions, you can reduce the result to lowest terms. But you don’t always 
have to.

By now you must wonder, “Does it matter whether or not a fraction is in lowest terms?” The answer is, 
“It depends.” If you want to express a fraction in the simplest or most “elegant” possible way, you should 
reduce it. But you will sometimes come across situations where it’s better to put a fraction, ratio, or pro-
portion in a form other than lowest terms.



Suppose you want to describe how many people in Country X have green eyes, per 100,000 popula-
tion. You might discover that one out of every 10 people has green eyes. You could say that 1/10 of the 
people have green eyes, or the ratio of people with green eyes to all the people in Country X is 1:10. But 
if you use 100,000 population as a basis, you’ll have to say that the proportion of people with green eyes 
is 10,000 per 100,000 population in Country X. That’s not even close to the lowest form, but it conveys 
the intended meaning better.

In pure theory, it doesn’t matter if a fraction, ratio, or proportion is in lowest terms or not. These days, 
nearly everyone uses computers in complicated calculations, and the machines don’t care about lowest terms. 
You can input the numbers as they are, and the computer will output the data in any form you want.

Here’s a challenge!
Start with the general equation for adding two fractions:

a /b + c /d = (ad + bc)/(bd )

Based on this, and on the rules you already know, prove that

a /b − c /d = (ad − bc)/(bd )

as long as b ≠ 0 and d ≠ 0.

Solution
Table 6-2 shows how the subtraction formula is derived from the addition formula. Near the end of this 
proof parentheses and brackets aren’t enough for grouping of an expression, so braces must be used! They 
look exactly the same as they braces you use to enclose lists of symbols representing set elements, but the 
purpose is different.

Table 6-2. Derivation of a general formula for the subtraction of one fraction 
from another, based on the formula for addition of fractions. As you read down 

the left-hand column, each statement is equal to all the statements above it.

Statements  Reasons

a /b − c /d Begin here
a /b + [−(c /d )] Convert subtraction to addition of a negative
a /b + [−1(c /d )] Principle of the sign-changing element
a /b + (−1/1)(c /d ) “Divisive identity element”: substitute −1/1 for −1
a /b + (−1)c /1d Multiplication of fractions to right of plus sign
a /b + (−1)c /d Multiplicative identity element: substitite d for 1d
[ad + b(−1)c]/bd  Formula for addition of two fractions, considering (−1)c as a single quantity
[ad + (−1)bc]/bd Commutative law for multiplication
[ad + (−1)(bc)]/bd Group elements b and c with parentheses
{ad + [−(bc)]}/bd Principle of sign-changing element (the other way around)
(ad − bc)/bd Convert addition of a negative to subtraction
Q.E.D. Mission accomplished
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Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  The highest wind speed in a “category 1” hurricane is 95 miles per hour. The highest 
wind speed in a “category 4” hurricane is 155 miles per hour. What is the ratio of these 
wind speeds, expressed in lowest terms between two integers?

 2.  On the absolute temperature scale, the coldest possible temperature is 0, defined in 
units called kelvins. On this scale, pure water at sea level freezes at 273 kelvins and boils 
at 373 kelvins (to the nearest kelvin). Based on this information, what is the ratio of the 
absolute temperature of the boiling point to the absolute temperature of the freezing 
point, expressed in lowest terms between two integers?

 3.  Is the fraction 231/230 in lowest terms? If not, reduce it to lowest terms.

 4.  Is the fraction −154/165 in lowest terms? If not, reduce it to lowest terms.

 5.  If two fractions are in lowest terms and they are multiplied by each other, is the product 
always in lowest terms? If so, prove it. If not, provide an example. If the product is 
sometimes in lowest terms but not always, provide examples of both situations.

 6.  If two fractions are in lowest terms and one is divided by the other, is the quotient 
always in lowest terms? If so, prove it. If not, provide an example. If the quotient is 
sometimes in lowest terms but not always, provide examples of both situations.

 7. In one of the “challenge” problems, you found a general expression for
[(a /b)/(c /d )]/(e /f   )

   when a, b, c, d, e, and f are all nonzero integers. You divided a /b by c /d, and then 
divided the result by e /f. Now find a general expression for

(a /b)/[(c /d )/(e /f   )]
   Once you’ve done this, you’ll know what happens when you divide c /d by e /f   first, and 

then divide a /b by the result. Compare this with the formula you got when you solved 
the “challenge” problem.

 8.  Imagine that you have a fraction of the form a /b and another of the form c /d, where 
a and c are integers, and b and d are positive integers. Show that the commutative 
law works for multiplication of these fractions, based on your knowledge of the 
commutative law for integers.

 9.  Imagine that you have fraction of the form a /b, another of the form c /d, and a third of 
the form e /f, where a, c, and e are integers, and b, d, and f are positive integers. Show 
that the associative law works for multiplication of these fractions, based on your 
knowledge of the associative law for integers.

 10. Give at least one example of a situation in which the following equation is true:
(a /b)/(c /d ) = (c /d )/(a /b)

   where a, b, c, and d are integers. Don’t use any of the trivial cases where all four of the 
integers have absolute values of 1.



Now that you know how a rational number can be expressed as a ratio of two integers, let’s 
look at the other common way these numbers are symbolized. Since the middle of the twenti-
eth century, calculators and computers have replaced “manual” methods of calculation. These 
machines use decimal fractions.

Powers of 10
A positive-integer power is a quantity multiplied by itself a certain number of times. If a non-
zero quantity is divided by itself once, it is said to be “raised” to the zeroth power, and the result 
is always 1. A negative-integer power is a nonzero quantity divided by itself more than once. 
Powers are denoted by exponents. Decimal notation is based on integer powers of 10. The 
number 10 is called the exponential base. It can also be called simply the base or the radix.

Orders of magnitude

Figure 7-1 is a number line showing the powers of 10, from 105 (the largest number in the 
illustration) down to 10−5 (the smallest). Each multiple of 10 is called an order of magnitude.
For example, 103 is one order of magnitude larger than 102, and 10−2 is three orders of mag-
nitude larger than 10−5.

This number line differs from the ones you’ve seen so far. All the values here are positive. As 
you go upward on the line, the numerical value increases faster and faster, so you race off toward 
“infinity” more rapidly than you do on a conventional number line. As you go downward, the 
value decreases at a slower and slower rate, “closing in” on 0 but never quite getting there.

If you expand on this idea, you can “build” any positive rational number by taking single-
digit multiples of powers of 10, and adding them up. Every positive number in this form has 
its negative “twin.” To show the negative rational numbers, you can make up a separate num-
ber line for them. In order to account for 0, you can give it a special point that isn’t on either 
line. Figure 7-2 portrays all the rational numbers using this system. “Infinity” and “negative 
infinity” are not entitled to points here, because neither of them is a rational number!
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96 Decimal Fractions

Start at the decimal point

The “cornerstone” on which any decimal numeral is “built” is the decimal point. It looks like 
an ordinary period (.). Digits for positive powers of 10 are written to the left of the decimal 
point. Digits for negative powers of 10 are written to the right of the point.

Consider the decimal numeral 362.7735. Let’s break it down. Starting at the decimal 
point and working toward the left:

 (2 × 100) + (6 × 101) + (3 × 102) = 2 + 60 + 300 = 362
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Starting at the decimal point and working toward the right:

 (7 × 10−1) + (7 × 10−2) + (3 × 10−3) + (5 × 10−4)
= 7/10 + 7/100 + 3/1,000 + 5/10,000 = 0.7735

When we add the whole number to the decimal fraction, we get

362 + 0.7735 = 362.7735

Are you confused?
You will sometimes hear scientists talk rather loosely about orders of magnitude. They mean to say that 
the absolute value of one quantity is some power of 10 times bigger or smaller than the absolute value of the 
other quantity. Here are a few examples:

• 45,300 is one order of magnitude larger than 4,530
• 0.56 is two orders of magnitude smaller, in absolute terms, than −56
• −0.565 is three orders of magnitude smaller, in absolute terms, than 565
• −88,888 is four orders of magnitude larger, in absolute terms, than −8.8888

If one or both quantities is negative, you should be sure to include the phrase “in absolute terms” so there’s 
no confusion about the meanings of “smaller” or “larger.”

When you want to portray a decimal number greater than or equal to 0 but smaller than 1, it is custom-
ary to write a single numeral 0 to the left of the decimal point. If the number is greater than −1 but smaller 
than 0, you should write the minus sign first, then a single 0, and then the decimal point.

Here’s a challenge!
Express the scheme for “building” a decimal numeral in general terms, rather than merely providing 
examples.

Solution
Imagine two sets of single-digit numerals, called set A and set B. Suppose A has m elements and B has 
n elements, named as follows:

A = {a1, a2, a3, ..., am}

and

B = {b1, b2, b3, ..., bn}

Now imagine these single-digit numerals arranged around a decimal point like this:

am ... a3 a2 a1 . b1 b2 b3 ... bn

The string of numerals to the left of the point represents the sum

SA = (am × 10m−1) + ··· + (a3 × 102) + (a2 × 101) + (a1 × 100)



The string of numerals to the right of the point represents the sum

SB = (b1 × 10−1) + (b2 × 10−2) + (b3 × 10−3) + ··· + (bn × 10−n)

The entire number is represented by the sum S = SA + SB. Mathematicians like to use the nonitalic, upper-
case Greek letter sigma (Σ) to represent sums of many numbers. We can get fancy and write the above 
expressions like this:

ΣA = (am × 10m−1) + ··· + (a3 × 102) + (a2 × 101) + (a1 × 100)

and

ΣB = (b1 × 10−1) + (b2 × 10−2) + (b3 × 10−3) + ··· + (bn × 10−n)

The entire number is therefore the sum Σ = ΣA + ΣB. It’s a good idea to remember this summation symbol.
You’ll come across it when you study higher algebra, precalculus, and calculus.

Terminating Decimals
All of the decimal expressions you’ll see in everyday situations have a finite number of digits 
to the right of the decimal point. The most common example is the notation for dollars and 
cents, where there are always two digits to the right of the decimal point. Any further dig-
its, if you want to write them, are all ciphers. A numeral of this sort is called a terminating 
decimal.

Tenths, hundredths, or whatever

In a terminating decimal, the digits to the right of the decimal point always represent a frac-
tion having a denominator that is some power of 10. If there’s one digit, it represents 10ths; 
if there are two digits, they represent 100ths; if there are three digits, they represent 1,000ths; 
and so on, as far as you want to go. For example,

• 0.7 represents 7/10
• 0.72 represents 72/100
• 0.729 represents 729/1,000
• 0.7294 represents 7,294/10,000
• 0.72941 represents 72,941/100,000

When you have a denominator of 10n, where n is a positive integer, it is the equivalent of 
multiplying by 10−n. You can also write the above examples as

• 0.7 represents 7 × 10−1

• 0.72 represents 72 × 10−2

• 0.729 represents 729 × 10−3

• 0.7294 represents 7,294 × 10−4

• 0.72941 represents 72,941 × 10−5
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Don’t be fooled here! These examples don’t represent changes in the order of magnitude. 
Instead, they all represent numbers that are very close to each other. The values approach the 
last number in either list, which is 0.72941. If that’s as far as you want to go, then adding any 
more digits to the right of the 1 will only clutter the page with ciphers (zeros). The following 
numerals all represent exactly the same number to a pure mathematician:

0.72941
0.729410
0.7294100
0.72941000
0.729410000
0.7294100000

↓
and so on, forever

Physicists or engineers see the above numbers differently. To them, those extra ciphers are 
important, because they represent increasing precision or accuracy. They’re extra significant
figures. Let’s not worry about that right now.

Commas and extra ciphers

In any decimal expression, the number of digits to the left of the decimal point is always finite. 
If you “chop off ” the digits to the right of the point, the digits to the left represent an integer. 
You might add ciphers to the left-hand end of the digit string without changing the value, but 
there’s rarely any reason to do that. You won’t often see a numeral like this:

00,000,004,580,103.7864892022

Instead, it would be written as

4,580,103.7864892022

In a decimal numeral, commas are not customarily inserted to the right of the point, no matter 
how many digits there are.

What about lowest terms?

When you see a decimal expression that ends after a certain number of digits to the right of 
the point, those digits always express a fraction with a denominator that is some power of 
10. This fraction might be in lowest terms, but often it is not. For example, in the decimal 
66.31, the fractional part is 31/100, which is in lowest terms because 31 is prime. However, 
in the decimal 66.35, the fractional part is 35/100. If reduced to lowest terms, that would 
be 7/20.

When you write or see a decimal expression, you shouldn’t worry about reducing the frac-
tional part to lowest terms unless the nature of the problem demands it. Those digits to the 
right of the point are always supposed to represent 10ths, 100ths, 1,000ths, and so on.



Are you confused?
Numbers such as 4,580,103.7864892022 can be hard to read, especially when you see them on a calcula-
tor display that does not insert the commas. You can insert spaces on either side of the point, and also after 
every third digit to the right of the decimal point. Those spaces will make the whole thing easier to read. 
The above numeral would then look like this:

4,580,103 . 786 489 202 2

Be careful when you insert spaces into a numeral! In this example, the lonely digit 2 at the end might 
confuse some people. Also, note that the spaces between these digits don’t correspond to the places you’d 
put the commas if you were to express them as a fraction. (You’ll see this in the “challenge” example 
below.)

Here’s a challenge!
Break down 4,580,103.7864892022 into a sum of a single integer and a single fraction.

Solution
Let’s look to the left of the point first. The string of numbers is one big integer:

4,580,103

Now let’s look to the right of the point. There are 10 digits here. That means the denominator of the frac-
tion should be denoted as 1 with 10 ciphers after it, producing the fraction

7,864,892,022 / 10,000,000,000

The entire number is the sum of these:

4,580,103 + 7,864,892,022 / 10,000,000,000

Endless Decimals
Whenever you write out a decimal expression in the “real world,” it’s always a terminating 
decimal. But in theory, the digits to the right of the decimal point can continue forever, so 
you can never reach a spot where every digit further to the right is a cipher. This always hap-
pens when you divide a prime number larger than 5 by any other prime larger than 5. It can 
happen in other cases, as well.

Endless repeating decimals

Your calculator can give you a glimpse of what an endless repeating decimal, also called a non-
terminating repeating decimal, looks like. The calculator program in a personal computer is 
excellent for this purpose, because it displays a lot of digits.
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A good way to see the difference between a terminating decimal and an endless repeating 
decimal is to use the “1/x” key on your calculator and start with 2 for x. Then try it with 3, 4, 
5, and so on, watching the results:

 1/2 = 0.5
 1/3 = 0.333333333333...
 1/4 = 0.25
 1/5 = 0.2
 1/6 = 0.166666666666...
 1/7 = 0.142857142857...
 1/8 = 0.125
 1/9 = 0.111111111111...

The fractions 1/2, 1/4, 1/5, and 1/8 all work out as terminating decimals. The fractions 1/3, 
1/6, 1/7, and 1/9 divide out as endless repeating decimals. The presence of an ellipsis (three 
periods) indicates that the pattern continues forever. Note the uniqueness of 1/7, which goes 
through a repeating cycle of the six digits 142857.

Are you confused?
When you divide an integer by another integer, and if the two integers are large enough, your calculator 
display might not show enough digits to let you see the pattern of repetition. Take a calculator that can 
show 10 digits, and divide out this fraction:

138,297,004,792/999,999,999,999

Now suppose you show your calculator display to a friend, tell her it’s the quotient of two integers you 
entered, and then ask her what fraction you put in. Even if she has a Ph.D. in math, she will not be able 
to figure it out. The pattern here is too big for the display.

Once in a while you’ll come across a situation where an integer is divided by another integer and you 
can’t see the pattern in the decimal expression because the repeating sequence has too many digits. But 
there is always a pattern whether you can see it or not. That’s because any rational number can be expressed 
as either a terminating decimal or an endless repeating decimal.

Endless nonrepeating decimals

You might wonder whether there are any decimal numbers that go on forever with digits to 
the right of the decimal point, but that don’t produce a repeating sequence. The answer is 
“Yes.” Examples are easy to find.

Consider the circumference of a perfect circle divided by its diameter. This value is always 
the same, no matter how large or small the circle happens to be. In ancient times, people 
knew that the circumference of a circle is slightly more than 3 times its diameter. They tried 
to define it as a fractional ratio—that is, as a quotient of two integers—but the best they could 
do was to come close. For a long time they thought it was 22/7. Eventually, mathematicians 



were able to prove that this number, which can be so easily defined in terms of geometry, can-
not be defined as a ratio between two integers!

If you’ve taken any geometry, you know that the circumference of a circle divided by its 
diameter is symbolized by the small Greek letter pi (π). Many calculators have a key you can 
punch to get π straightaway. You’ll never find any repeating pattern of digits in the decimal 
expansion of π. Even if you spend the rest of your life trying, you will fail. That’s because π
is not a rational number. Mathematicians call quantities such as π irrational numbers. You’ll 
learn more about them in Chap. 9.

Here’s a challenge!
Imagine a decimal expression that has an endlessly repeating triplet of digits. We can write it down in this 
form:

0 . ### ### ### ...

where ### represents the sequence of three digits that repeats. The spaces on either side of the decimal 
point, and after each triplet of pound signs, are inserted to make the expression clear. Our mission is to 
show that this decimal numeral represents the fraction

###/999

Solution
Let’s call the “mystery fraction” m. Our task is to find a fractional expression for m. This process is straight-
forward, but it takes several steps. Follow along closely, and you shouldn’t have any trouble understanding 
how it works. We’ve been told that

m = 0 . ### ### ### ...

We can break this into a sum of two decimal expressions, one terminating and the other endless, like this:

m = (0 . ###) + (0 . 000 ### ### ### ...)

Note that the first addend here is ###/1,000. The second addend happens to be the original mystery 
number, m, divided by 1,000. Therefore,

m = (###/1,000) + (m/1,000)

The two fractions on the right-hand side of the equals sign have a common denominator, so they’re easy 
to add. We get

m = (### + m)/1,000

Now we can multiply each side of this equation by 1,000 and then manipulate the right-hand side, getting

 1,000 m = 1,000 (### + m)/1,000

 = (### + m) (1,000/1,000)

 = ### + m
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Therefore,

1,000 m = ### + m

Subtract m from the expressions on both sides of the equals sign, obtaining

1,000m − m = ### + m − m

This simplifies to

999 m = ###

Finally, we divide each side by 999, getting

m = ###/999

Mission accomplished! Q.E.D.

Conversions
Every rational number can be expressed in two ways: the ratio form as an integer divided by 
another integer, and the decimal form as a string of digits with a decimal point somewhere. If 
you have a rational number in one form, you can always convert it to the other.

Ratio to decimal

When you see a ratio of integers, you can convert it to decimal form if you have a calculator 
that can display enough digits. But that’s the catch! Even a good calculator can fall short in 
this respect. If you have a calculator with a 10-digit display and you divide 1 by 7, you will 
not even see two full repetitions of the pattern. If you didn’t know better from having seen 
the decimal expansion of 1/7 earlier in this chapter, you might not be able to deduce it from 
a 10-digit calculator alone. If you have a good computer calculator program, you’re better off. 
But even the best calculators can be overwhelmed if you give them a “bad” enough ratio. Try 
51/29, for example!

Fortunately, you won’t have to perform ratio-to-decimal conversions very often. When 
you come across a problem where you have to do it, the calculator program in any good 
personal computer will usually work. In the extreme, you can always resort to old-fashioned, 
manual long division. You can also write, or find, a computer program to grind out thousands 
of digits and look for patterns.

Terminating decimal to ratio

When you see a terminating decimal expression and you want to convert it to a ratio of 
integers, you can do it in steps. Here’s an example. Imagine that you are given this decimal 
numeral and are told to put it into ratio form as a quotient of two integers:

3,588 . 7601811



The extra spaces on either side of the decimal point are there to make it easy to distinguish the 
digit string to its left from the digit string to its right.

First, take the part of the decimal expression to the right of the point. Put those digits 
into the numerator of a fraction. Then count the number of digits in the string. Suppose 
that number is n. In this case, you have 7601811. That’s a string of seven digits, so n = 7. 
In the denominator of the fraction, write a 1 and then n ciphers. The fractional part is 
therefore

7,601,811/10,000,000

Second, take the part of the decimal expression to the left of the point. Put those digits into 
the numerator of a new fraction. In the denominator, put 1. In this case, the result is

3,588/1

The third part of the process is a little tricky! Add n ciphers after the 1 in the denominator you 
just put down, so that denominator is identical to the denominator you “built” for the deci-
mal part of the expression. Then also add n ciphers in the numerator for the whole-number 
part. When you do this, you multiply the whole-number part of the expression by a certain 
number and then divide that number by itself. That’s just a fancy (or maybe you’d rather say 
messy) way of multiplying by 1. In this case you get

35,880,000,000/10,000,000

Fourth, add the fraction you “built” for the whole-number part of the decimal expression to 
the fraction you “built” for the decimal part. This should be easy, because you have engineered 
things to get a common denominator! In this case, it’s 10,000,000. Adding the numerators 
produces

35,880,000,000 + 7,601,811 = 35,887,601,811

That’s the numerator of the ratio you want. The denominator is 10,000,000, so the complete 
ratio is

35,887,601,811/10,000,000

If you’d like to check this, divide the ratio out on a calculator that can display at least 11 digits. 
You should get the original decimal expression.

Endless repeating decimal to ratio

The solution to the “challenge” problem in the last section should give you an idea of how to 
convert any endlessly repeating decimal to a ratio of two integers. You can generalize on the 
number of digits in the repeating pattern, from one up to as many as you want.

When you encounter a decimal expression that has a sequence of digits that repeats with-
out end, first split the whole-number part from the decimal part. Call the whole-number part a. 
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Then write down the part of the expression to the right of the decimal point in this form, with 
the point on the extreme left:

. b1 b2 b3 ... bk b1 b2 b3 ... bk b1 b2 b3 ... bk

where b1 b2 b3 ... bk represents the sequence of k digits that repeats. (Each b with a subscript 
represents a single digit.) The extra spaces after the decimal point, and between each digit, are 
there to make the expression easy to read. The fractional part of the expression is

b1 b2 b3 ... bk /999 ... 999

where the denominator has k digits, all 9s. Now you can put back the whole-number part, 
getting the number in this form:

a-b1 b2 b3 ... bk /999 ... 999

Here, the dash after the a is there only to separate the whole-number part of the expression 
from the fractional part. It is not a minus sign!

Now convert a to a fraction with a denominator consisting of k digits, all 9s. All you have 
to do is multiply a by the number 999 ... 999, put the result into the numerator of a fraction, 
and then put 999 ... 999 in the denominator, getting

999 ... 999 × a /999 ... 999

Add this to the fraction you got by converting the decimal part of the original expression. 
That gives you

(999 ... 999 × a /999 ... 999) + (b1 b2 b3 ... bk/999 ... 999)

You have a common denominator now, so you can easily add to get

[(999 ... 999 × a) + (b1 b2 b3 ... bk)]/999 ... 999

Remember that the expression 999 ... 999 always stands for a sequence of k digits, all 9s.

Are you confused?
The notation shown above is messy, and it’s easy to “get lost.” Try reading it over a few times and it should 
become clearer to you. A specific example, showing the process in “real life action,” can help. Let’s convert 
the following expression to a ratio of integers:

23 . 860486048604 ...

Again, the extra spaces on either side of the decimal point are there only to make it easy to distinguish 
between the whole-number part of the expression and the decimal part.

The decimal portion is a sequence of the digits 8, 6, 0, and 4 that endlessly repeats. We can tell right 
away that this is 8,604/9,999.



The whole-number portion, 23, can be multiplied by 9,999, and the result put into the numerator of a 
fraction. The denominator should then be 9,999, so we get

(23 × 9,999)/9,999 = 229,977/9,999

That’s just the whole number 23 expanded into 9,999ths. Now we add the decimal part back in, so the 
entire number becomes

 229,977/9,999 + 8,604/9,999 = (229,977 + 8,604)/9,999

 = 238,581/9,999

If you use a calculator that can display a lot of digits to divide out this fraction, you should get the original 
expression: 23 followed by a decimal point, and then the sequence of digits 8, 6, 0, and 4 repeating.

Here’s a challenge!
There’s a less formal, but much quicker, way to do the decimal-to-ratio conversion described in the section 
“Terminating decimal to ratio” earlier in this chapter. How does it work?

Solution
For reference, here is the original decimal expression again, with extra spaces on either side of the point 
for easy reading:

3,588 . 7601811

Move the point to the right until it’s at the end of the string of digits, leaving nothing beyond. Then delete 
the point. You’ll get the whole number

35,887,601,811

Now make this the numerator of a fraction. Count the number of places you moved to the right to get 
the point to the end of the string of digits. (In this case, it’s seven places.) Then in the denominator of the 
fraction, write down a 1 followed by that number of ciphers. The result:

35,887,601,811/10,000,000

You can apply this method to any decimal expression you’ll ever see. The end result might not be in lowest 
terms, but you can reduce it to lowest terms if you want.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!
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 1.  Draw a number line in power-of-10 style that shows the rational numbers from 10 to 
100,000. How many orders of magnitude is this? 

 2.  Draw a number line in power-of-10 style that shows the rational numbers from 30 to 
300,000. How many orders of magnitude is this? 

 3.  How many orders of magnitude larger than 330 is 75,000,000? Here’s a hint: Express 
the answer by saying “75,000,000 is between n and n + 1 orders of magnitude larger 
than 330,” where n is a whole number.

 4.  Write the following decimal expressions as combinations of integers and fractions. 
Reduce the fractional part to lowest terms.
(a) 4.7
(b) −8.35
(c) 0.02
(d) −0.29

 5.  Express the numbers from the solutions to Prob. 4 as ratios of integers, with the 
denominator always positive.

 6. Write the following ratios as decimal expressions.
(a) 44/16
(b) −81/27
(c) 51/13
(d) −45/800

 7.  Convert the fraction 1/17 to another fraction whose denominator is a string of 9s.

 8. Convert the expression 2.892892892 ... to a ratio of integers.

 9.  Suppose that somebody tells us there are two integers so large that it would take a 
person billions of years to write either of them out by hand. We are also told that both 
of these integers are prime numbers, and that the decimal expansion of their ratio (that 
is, one of these primes divided by the other) is an endless sequence of digits. Is there a 
repeating pattern to the digits in the decimal expansion?

 10.  Imagine that we come across a gigantic string of digits—miles long if we try to write 
it out—and we can’t see any pattern. We use a computer to examine this number to a 
thousand decimal places, then a million, then a billion, and we still can’t find a pattern. 
Can we ever know for sure whether or not a pattern actually exists, so we can decide 
whether or not the number is rational? Here’s a hint: This exercise is meant to force 
your imagination into overdrive!



Now it’s time to review and expand your knowledge of powers and roots. When you take a 
number to an integer power, it’s like repeated multiplication. When you take a number to 
an integer root, it’s like repeated division. But powers and roots go deeper than that! With 
a few exceptions, you can raise anything to a rational-number power and get a meaningful 
result.

Integer Powers
The simplest powers, also called exponential operations, involve multiplying a number or quan-
tity by itself a certain number of times. The power is written as a superscript after the quantity 
to be “operated on.” This operation is sometimes called raising to a power.

Positive integer powers

If a is any number and p is a positive integer, the expression a p means a to the pth power, 
which is a multiplied by itself p times. More generally, a doesn’t have to be a number. It can 
be a variable or a complicated expression containing numbers and variables. Here are some 
examples of quantities raised to positive integer powers:

42

x4

(k + 4)7

(abc)4

(m /n)12  where n ≠ 0
(x 2 − 2x + 1)5

Note that in the last expression, the quantity raised to the 5th power actually contains a vari-
able raised to a different power.
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The 0th power

By convention, anything raised to the 0th power is equal to 1. Anything except 0 itself, that is! 
The quantity 00 is not defined. You’ll see why any nonzero quantity raised to the 0th power is 
equal to 1 later in this chapter. You’ll also see why 00 is not defined. Here are some expressions 
that are all equal to 1:

40

x 0  where x ≠ 0
(k + 4)0  where k ≠ −4

(abc)0  where a ≠ 0, b ≠ 0, and c ≠ 0
(m /n)0  where m ≠ 0 and n ≠ 0

(x2 − 2x + 1)0  where x ≠ 1

In every expression except the topmost one, there are constraints on the variables in the quan-
tities being raised to the 0th power. These keep the values of the quantities from being equal 
to 0. If you’re not sure about the reason for the constraint on x in the last expression, hold on 
a minute and you’ll see.

Whenever you find any expression containing variables, and that expression is to be raised 
to the 0th power, be sure you never let that expression attain a value of 0. This is especially 
important if such an oversight is a step in solving a problem! You would be throwing an unde-
fined quantity into a sensitive process. You’ve heard what computer programmers say about 
putting nonsense into a machine! The same thing happens in mathematics.

Negative integer powers

If a is any number and n is a negative integer, the expression a n means the reciprocal of the 
quantity a raised to the power of |n|. For example,

 a−1 = 1/(a1) = 1/a
 a−3 = 1/(a 3)
 a−20 = 1/(a 20)

As before, a can be almost any expression you can imagine. Note that the −1st power of any 
quantity is the same thing as its reciprocal (multiplicative inverse). You’ll often see this nota-
tion used because it can be a lot less “messy” than writing 1, then a slash, and then a compli-
cated expression. Here are some examples of numbers or quantities raised to negative integer 
powers:

4−2

x−4  where x ≠ 0
(k + 4)−7  where k ≠ −4

(abc)−4  where  a ≠ 0, b ≠ 0, and c ≠ 0
(m /n)−12  where m ≠ 0 and n ≠ 0

(x 2 − 2x + 1)−5  where x ≠ 1



The constraints are imposed, as with the 0th power, to keep the “powerized” quantities from 
being equal to 0. If you take a negative integer power of 0, you end up with 1/0, and that’s not 
defined. For example, 0−7 = 1/(07) = 1/0.

Are you confused?
You should be able to see, without much trouble, how the second, third, fourth, and fifth quantities above 
can be equal to 0. Here they are:

x = 0   when x = 0, of course!

(k + 4) = 0   when k = −4

(abc) = 0   when a = 0, b = 0, or c = 0

(m /n) = 0   when m = 0

But what about the sixth and last expression? It’s not immediately clear that

(x 2 − 2x + 1) = 0   when x = 1

You can “plug in” the value 1 for x and see that you get 0 when you add everything up. But would 
you have “plugged in” 1 at random, thinking it might cause the whole expression to equal 0? Prob-
ably not!

When you deliberately allow this whole expression to be equal to 0, you get something called a qua-
dratic equation. Such equations can be solved in various ways. It turns out that there is one solution to 
the equation

(x 2 − 2x + 1) = 0

That happens to be x = 1. Don’t worry about how this type of equation can be solved right now. You’ll 
learn how to do it later in this book. For the moment, pay attention to the important message: Beware of 
taking 0 to the 0th power, and beware of dividing by 0! Don’t let these things happen, even accidentally.

Here’s a challenge!
What happens if you start with 2 and raise it to successively higher positive integer powers? What happens 
if you raise 2 to integer powers that get larger and larger negatively?

Solution
If you start with 2 and raise it to positive integer powers, you get

21 = 2

22 = 2 × 2 = 4

23 = 2 × 2 × 2 = 8

24 = 2 × 2 × 2 × 2 = 16

↓
and so on, forever
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The value keeps getting larger without limit, doubling every time. The sequence of values is said to diverge.
In this particular example, it “approaches infinity.” But if you start with 2 and raise it to integer powers 
that get larger and larger negatively, this is what happens:

2−1 = 1/2

2−2 = 1 / (2 × 2) = 1/4

2−3 = 1 / (2 × 2 × 2) = 1/8

2− 4 = 1 / (2 × 2 × 2 × 2) = 1/16

↓
and so on, forever

The value keeps getting smaller and smaller, becoming half its former size every time you decrease the 
integer power by 1, but always remaining positive. This sequence of values is said to converge. In this case 
it “approaches 0.”

Reciprocal-of-Integer Powers
Now that we’ve seen what happens when a number is raised to an integer power, let’s find out 
what goes on when a number is raised to a power that is the reciprocal of an integer.

Integer roots are reciprocal-of-integer powers

Suppose we take some number or quantity a, and raise it to the power 1/p where p is a positive 
integer. We write this as

a1/p

We can surround the exponent with parentheses for clarity. If we do that to the above expres-
sion, we get

a(1/p)

In this case, the parentheses are not technically necessary because the whole ratio is written as 
a superscript anyway.

When we take a reciprocal-of-integer power of a quantity, the result is often called a root.
If you have a number and raise it to the power 1/p, it is the same thing as taking the pth root 
of that number. If p is a positive integer, then the pth root of a quantity is something we must 
multiply by itself p times in order to get that quantity.

The square root

If the general formulas above confuse you, it can help if we look at an example. We know that

52 = 5 × 5 = 25



The second power is often called the square, so we can say, “5 squared equals 25.” By defini-
tion then

251/2 = 5

We would say, “The square root of 25 is equal to 5.” In general, for any two numbers a and b,
and for any positive integer p, we can say this:

If a p = b, then b1/p = a

The reason the 2nd power is called the square and the 1/2 power is called the square root can 
be explained in terms of the dimensions and area of a perfect geometric square. For any geomet-
ric square, the interior area is equal to the 2nd power of the length of any one of the edges, as 
shown in Fig. 8-1. That’s why the 2nd power is called the square. Looking at it the other way, 
the length of any one of the edges is equal to the 1/2 power of the interior area. That’s why the 
1/2 power is called the square root. In the figure, the radical notation for square root is shown, 
in addition to the 1/2 power notation. The radical consists of a surd symbol (√) with a line 
extending over the top of the quantity of which the square root is taken.

The cube root

Now let’s see what happens when p = 3, so 1/p = 1/3. We can easily figure out what happens 
when we raise a number, say 4, to the 3rd power:

43 = 4 × 4 × 4 = 64

Interior
area = A

Length of edge = s

L
e
n
g
th

 o
f 
e
d
g
e
 =

 s

A = s 2

s = A
1/2

and

= A

Figure 8-1  The area of a geometric square is equal to 
the 2nd power, or square, of the length of 
any edge. Therefore, the length of any edge 
is equal to the 1/2 power, or square root, 
of the area.
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The third power is often called the cube. We can say, “4 cubed equals 64.” Now if we go with 
the reciprocal power and work backwards, we get

641/3 = 4

This can be read as, “The cube root of 64 equals 4.” 
The 3rd power is called the cube and the 1/3 power is called the cube root because of the 

relationship between the edges and the interior volume of a geometric cube. For any perfect 
cube, the volume is equal to the 3rd power of the length of any edge (Fig. 8-2). Going the 
other way, the length of any edge is equal to the 1/3 power of the volume. The figure also 
shows the radical notation for the cube root. The fact that the radical refers to the cube root, 
rather than the square root, is indicated by the small numeral 3 in the upper-left part of the 
radical symbol. 

Higher roots

When p is a positive integer equal to 4 or more, people write or talk about the numerical pow-
ers and roots directly. That’s because geometric hypercubes having 4 dimensions or more are not 
commonly named. A 4-dimensional hypercube is technically called a tesseract, but you should 
expect incredulous stares from your listeners if you say “2 tesseracted is 16” or “The tesseract 
root of 81 is 3.”

Here are some examples of higher powers and roots. You can check the larger ones on 
your calculator if you like.

24 = 16  so 161/4 = 2
34 = 81  so 811/4 = 4

Length of edge = s
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Interior
volume = V

Length of
edge = s

= s

s =

and
V

V

3

1/3

= V
3

Figure 8-2  The volume of a geometric cube is equal to the 
3rd power, or cube, of the length of any edge. 
Therefore, the length of any edge is equal to 
the 1/3 power, or cube root, of the volume.



 56 = 15,625 so 15,6251/6 = 5
 −37 = −2,187 so (−2,187)1/7 = −3
 (−5)9 = −1,953,125, so (−1,953,125)1/9 = −5
 64 = 1,296 so 1,2961/4 = 6
 (−6)4 = 1,296 so 1,2961/4 = −6 ... What?

The radical notation can be used for any integer root. For the 1/n power, a small numeral n is 
placed in the upper left part of the radical symbol. If you use this notation, you must be sure 
that the radical symbol extends completely over the quantity of which you want to take the 
root. If you use the fractional notation, parentheses, brackets, and braces should be used to 
define the quantity of which you want to take the root.

Are you confused?
Now you will ask, “Can 6 and −6 both be valid 4th roots of 1,296?” The answer is “Yes.” Both 6 and −6
will work here:

6 × 6 × 6 × 6 = 1,296

and

(−6) × (−6) × (−6) × (−6) = 1,296

If you multiply any negative number by itself an even number of times, you’ll get a positive number. 
Therefore, if you have some number a and its additive inverse −a, and then you raise both of those num-
bers to an even positive integer power p, you will get

(−a)p = a p

every time! If we call (−a)p or a p by some other name such as b, then the pth root of b is ambiguous. That 
would mean, for example,

 161/4 = 2 and −2

 811/4 = 3 and −3

 15,6251/6 = 5 and −5

It could even mean something as simple, and yet as troubling, as

11/2 = 1 and −1

Mathematicians get around this problem by saying that whenever “two numbers at once” are the result of 
a reciprocal power, the positive value is the correct one, unless otherwise specified. That means

 161/4 = 2

 811/4 = 3
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 15,6251/6 = 5

 11/2 = 1

You can indicate that you want to use the negative value by placing minus signs like this:

 −(161/4) = −2

 −(811/4) = −3

 −(15,6251/6) = −5

 −(11/2) = −1

Sometimes you will actually want to let either the positive or the negative value be used. In cases of that 
sort, you should throw a plus-or-minus sign (±) into the mix, like this:

 ±(161/4) = ±2

 ±(811/4) = ±3

 ±(15,6251/6) = ±5

 ±(11/2) = ±1

Here’s another possible confusion-maker. Always pay special attention to where the parentheses are placed 
if you see a negative number raised to a power. Also, be careful if there are no parentheses at all. If there’s 
any doubt, it’s best to place extra parentheses in an expression so everyone knows exactly what it means. 
For example,

 (−2)3 = (−2) × (−2) × (−2) = −8

and

 −23 = −(23)

 = −(2 × 2 × 2)

 = −8

In contrast to this,

 (−2)4 = (−2) × (−2) × (−2) × (−2) = 16

but

 −24 = −(24)

 = −(2 × 2 × 2 × 2)

 = −16

Negative reciprocal powers

We still have not explored what happens when we raise a number to a negative reciprocal-of-
integer power. You can probably figure out the meaning of an expression such as 125−1/3, or 



125 to the −1/3 power. You take the 1/3 power of 125, which is 5, and then take the reciprocal 
of that, which is 1/5. Mathematically, it goes like this:

 125−1/3 = 125−(1/3)

 = 1/(1251/3)
 = 1/5

Even roots of negative numbers

What happens when you take an even root of a negative number? The simplest example of this 
sort of problem is the square root of −1, but there are plenty of others. What can you multiply 
by itself to get −1? Nothing that we’ve defined yet! What is the 1/4 power of 16? Again, noth-
ing we know of so far.

Mathematicians have defined quantities like this. We will explore them in Chap. 21. 
They’re called imaginary numbers. They have some fascinating properties. Unlike division by 
0 or the 0th root of 0, even roots of negative numbers can be “tamed.” They are commonly 
used in science and engineering.

Here’s a challenge!
State the rule for negative reciprocal powers in general terms, where a is the base (the number to be raised 
to the power) and p is a positive integer.

Solution
The power to which we want to raise the base is −1/p, where p is some positive integer. (We know that 
−1/p will be negative, because a negative divided by a positive always gives us a negative.) If we use the 
method from the above example where we evaluated 125−1/3, then we have

a−1/p = a− (1/p) = 1/(a1/p)

Multiplying and Dividing with Exponents
When we have a certain base number raised to two different powers, we get two different 
quantities. But the fact that those quantities have the same base lets us take shortcuts in mul-
tiplication and division.

Multiply by adding

Let’s state the general case first, and then check out an example. Imagine a number and call it a.
This can be any number except 0. It doesn’t have to be an integer or even a rational number. 
Now imagine the quantities a m and a n, where m and n are integers. If you multiply these two 
quantities, you get the same result as if you add m to n, and then raise the base a to that power. 
We can write this as an equation:

a ma n = a(m+n)
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Let’s call this the addition-of-exponents (AOE) rule. We can see how it works by trying out an 
example with specific numbers. Let a = 3, m = 2, and n = −4. Then

 32 × 3−4 = 9 × 1/81
 = 9/81
 = 1/9

and

 3[2+(−4)] = 3(2−4)

 = 3−2

 = 1/(32)
 = 1/9 

Divide by subtracting

Think of a nonzero number, b, along with two quantities b p and bq, where p and q are integers. 
If you divide the first of these quantities by the second, you get the same result as if you sub-
tract q from p, and then raise b to that power. Mathematically:

b p/b q = b(p−q)

Let’s call this the subtraction-of-exponents (SOE) rule. Now we’ll work out an example. Suppose 
we have b = 10, p = 5, and q = 3. Then

 105/103 = 100,000/1,000
 = 100

and

 10(5−3) = 102

 = 100

Are you confused (yet)?
Was that too easy for you? Let’s try a slightly tougher example. Let b = −2, p = 3, and q = 4. Then

 (−2)3/(−2)4 = −8/16

 = −1/2

and

 (−2)(3−4) = (−2)−1

 = 1/(−2)

 = −1/2



The AOE and SOE rules work not only when the exponents are integers, but for any rational numbers. 
You might call these facts the generalized addition-of-exponents (GAOE) rule and the generalized subtraction- 
of-exponents (GSOE) rule.

Here’s a challenge!
Using the SOE rule, provide a demonstration of why any nonzero quantity to the 0th power is equal to 1. 
Also show why 00 is not defined.

Solution
Look again at the formula that “translates” division of quantities into subtraction of exponents. That 
formula is

b p/b q = b(p −q)

where b is the base and p and q are integers. Now let’s think of the formula in reverse. We can transpose 
the left-hand and right-hand sides of the equation to get

b(p−q) = b p/b q

There’s nothing in the “rule book” that says we can’t have p and q be the same. Let’s do that, and call them 
both p. Then we have

b(p−p) = b p/b p

The left-hand side of this equation is b raised to the (p − p)th power, which must be b raised to the 0th 
power because p − p is always 0. The right-hand side is b p divided by itself, which has to equal 1 as long 
as b ≠ 0.

Now we get to the 00 situation. Let’s violate the “rule book” and let b = 0 in the above equation. Then 
we get

0(p−p) = 0 p/0 p

No matter what nonzero value we choose for p, we get 00 on the left-hand side of this equation, and 0/0 
on the right. So

00 = 0/0

The quantity 0/0 is not defined, so 00 can’t be, either.

Multiple Powers
Numbers can be raised to powers more than once. In this section we’ll see what happens when 
you raise a quantity to a power, and then raise the result to another power.
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When exponents multiply

Imagine that we have a number a that is not equal to 0. Suppose p and q are integers. What 
happens if we raise a to the pth power, and then raise the result to the q th power? Mathemati-
cally, we get this expression:

(a p)q

It is tempting to suppose that the result of this operation will always produce a huge number. 
That can happen if the absolute value of a is larger than 1, and if p and q are both positive and 
more than 1. For example:

 (45)6 = 1,0246

 = 1,152,921,504,606,846,976

It doesn’t always work out that way, however. If the absolute value of a is between 1 and 0, 
and if p and q are both positive and more than 1, the number may be quite close to 0. For 
example,

 [(−0.1)3]5 = (−0.001)5

 = −0.000000000000001

When you have any expression of this sort, you can get the same result if you take the base a
to the power of the product of the exponents pq. That is,

 (a p)q = a pq

Let’s call this the multiplication-of-exponents (MOE) rule. Looking at the numerical examples 
we just saw, and putting them in this form, illustrates this:

 (45)6 = 45×6

 = 430

 = 1,152,921,504,606,846,976

and

 [(−0.1)3]5 = (−0.1)3×5

 = (−0.1)15

 = −0.000000000000001

You can evaluate expressions with large exponents quickly by using a calculator with an “x to 
the yth power” key.

Rational-number powers

When you raise an exponentiated quantity (i.e., anything to a power) to another power, either 
or both of the exponents can be negative. The MOE rule still applies. In fact, we can let the 



exponents p and q be any rational numbers we want. That gives us the powerful, far-reaching 
generalized multiplication-of-exponents (GMOE) rule ! If a, p, and q are rational numbers and 
a ≠ 0, then

(a p)q = a pq

We now have a way to evaluate an expression where we raise a number to a certain power, and 
then take a root of the result. Remember that a root is a reciprocal power. So, if we encounter 
an exponent that takes the form r /s, we can call this the product of r and 1/s, and then use 
the GMOE rule:

(a r)1/s = a r (1/s) = a r /s

That’s how we’d evaluate the sth root of a r. But it also tells us something more: when we take 
a base number to a rational-number, noninteger power, it’s the same thing as taking the base 
to an integer power and then taking an integer root of the result. Remember, a rational num-
ber is a quotient of two integers! If we reverse the order of the terms in the above three-way 
equation, we get

a r /s = a r (1/s) = (a r)1/s

This is a heavy dose of abstract math! Let’s look at a couple of specific cases where integers are 
raised to rational-number powers. First, this:

 106/3 = 106×(1/3)

 = (106)1/3

 = 1,000,0001/3

 = 100

If you’re astute, you can solve this a lot quicker by noting that 6/3 = 2, so

 106/3 = 102

 = 100

Usually, rational-number powers aren’t this easy to evaluate. The results often produce num-
bers that aren’t even rational. Consider this example:

 23/2 = 23×(1/2)

 = (23)1/2

 = 81/2

 = 2.8284 ...

This is an endless nonrepeating decimal. It cannot be expressed as a ratio of integers, and is not 
a rational number. You’ll learn more about these types of numbers in the next chapter.
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Are you confused?
Let’s review the most important points in this chapter. They can be condensed into six statements.

• If a is any nonzero number and −n is a negative integer, the expression a−n means you should raise 
a to the power of |n|, and then take the reciprocal of the result.

• If a is any nonzero number and m and n are rational numbers, then a m times a n is the same as a
raised to the power of (m + n).

• If a is any nonzero number and m and n are rational numbers, then a m divided by a n is the same 
as a raised to the power of (m − n).

• If a is any nonzero number and p is any nonzero integer, then the pth root of a is the same as rais-
ing a to the power of 1/p.

• If a, p, and q are rational numbers and a is nonzero, then if you raise a to the pth power and take 
the result to the qth power, it’s the same as raising a to the power of pq.

• If a, p, and q are rational numbers with a and q nonzero, then if you raise a to the pth power and take 
the qth root of the result, it’s the same as raising a to the power of p /q.

Here’s a challenge!
What do you get if you take the −5/2 power of 6? Mathematically, evaluate this expression and use a cal-
culator to figure out the result to several decimal places:

6(−5/2)

Solution
Let’s apply the GMOE rule to this problem. It can be tricky because of the minus sign, and we have to be 
sure we remember the difference between negative powers and reciprocal powers. Let’s go:

 6(−5/2) = 6−5×(1/2)

 = (6−5)1/2

 = [1/(65)]1/2

 = (1/7,776)1/2

Now it’s time to use a calculator! Remember that the 1/2 power is the same as the square root. First we take 
the reciprocal of 7,776, getting a decimal point, three ciphers, and a long string of digits. Then we hit the 
square root key with the string of digits still in the display, getting

0.01134023 ...

The digits go on without end, and there’s no apparent pattern. As things turn out, this is not a rational 
number.



Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  What happens when a negative number is raised to an even positive integer power? An 
odd positive integer power?

 2. What happens if we
(a) Raise −2 to increasing integer powers, starting with 1?
(b) Do the same thing with a base of −1?
(c) Do the same thing with a base of −1/2?

 3. What happens if we
(a) Raise −2 to decreasing negative integer powers, starting with −1?
(b) Do the same thing with a base of −1?
(c) Do the same thing with a base of −1/2?

 4.  Suppose we come across the following expression. We want to simplify it to a sum 
of individual terms. How can we do this? Here’s a hint: Use the results of the final 
“challenge” in Chap. 5.

( y + 1)2

 5.  If we use the same technique as in the previous problem, we can also simplify the 
following expression. How?

( y − 1)2

 6.  Use the GAOE rule to prove, in narrative form, that for any number a except 0, and for 
any rational numbers p, q, and r

a pa qa r = a (p+q+r)

 7.  Use the GMOE rule to prove, in the form of an S/R table, that for any number a except 0, 
and for any rational numbers p, q, and r

[(a p)q]r = a pqr

 8.  Prove, in narrative form, that if x is any number except 0, and if r and s are rational 
numbers, then

(x r)s = (x s)r

 9.  Show that if you take the 4th root of any positive number and then square the result, it 
is the same as taking the square root of the original number.

 10.  Show that if you take the 6th power of any positive number and then take the cube root 
of the result, it is the same as squaring the original number.
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CHAPTER

9

Irrational and Real Numbers

We started out with the natural numbers (or naturals), and took their negatives to get the  integers. 
Then we divided integers by each other to come up with rational numbers (or rationals). In this 
chapter, we’ll study the irrational numbers (or irrationals) and real numbers (or reals), and com-
pile a full set of rules for working with real variables.

The Number Hierarchy
Mathematicians have known for centuries that there are plenty of irrational numbers that can’t be 
expressed as ratios of integers. Let’s see how they behave compared with the rational numbers.

Rational-number “density”

Suppose we assign rational numbers to points on a horizontal line so the distance of any point 
from the origin is directly proportional to its absolute value. If a point is on the left-hand side 
of the point representing 0, then that point corresponds to a negative number; if it’s on the 
right-hand side, it corresponds to a positive number.

If we take any two points a and b on the line that correspond to rational numbers, then the 
point midway between them corresponds to the rational number (a + b)/2. (Do you recognize this 
as the formula for the average, or arithmetic mean, of two numbers?) We can keep cutting an inter-
val in half, and if the end points are both rational numbers, then the midpoint is another rational 
number. Figure 9-1 shows an example of this, starting with the interval between 1 and 2.

It is tempting to suppose that the points on a rational-number line are “infinitely dense.” 
The point midway between any two rational-number points always corresponds to another 
rational number. But do the rational numbers account for all of the points along a true geo-
metric line? The answer is “No. They don’t even come close!”

Irrational numbers

As we have seen, an irrational number can’t be expressed as the ratio of two integers. Examples 
of irrational numbers include:
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• The length of the diagonal of a square that measures 1 unit on each edge.
• The length of the diagonal of a cube that measures 1 unit on each edge.
• The ratio of a circle’s circumference to its diameter.
• The decimal number 0.01001000100001000001...

Whenever we try to express an irrational a number in decimal form, the result is an endless 
nonrepeating decimal. (The last item in the above list has a pattern of sorts, but it is not 
a repeating pattern like the decimal expansion of a rational.) No matter how many digits 
we write down to the right of the decimal point, the expression is an approximation of the 
actual value. A pattern can never be found that allows us to convert the expression to a ratio 
of integers.

The set of irrationals can be denoted S. This set is disjoint from the set Q of rationals. No 
irrational number is rational, and no rational number is irrational. In set notation,

S ∩ Q = ∅

Real numbers

The set of real numbers, denoted by R, is the union of the set Q of all rationals and the set S
of all irrationals:

R = Q ∪ S

1–1/2

1 2

1–1/2

1–3/4

2

1–1/2 1–3/4

1–5/8

1–1/2 1–5/8

1–9/16

1–9/16 1–5/8

1–19/32

Figure 9-1  An interval on the rational-number line can be cut in 
half over and over, and you can always find infinitely 
many numbers in it.

The Number Hierarchy  125



126 Irrational and Real Numbers

We can envision the reals as corresponding to points on a continuous, straight, infinitely 
long line, in the same way as we can imagine the rationals. But there are more points on a 
real-number line than there are on a rational-number line. (Whether or not the real numbers 
can be paired off one-to-one with the points on a true geometric line is a question that goes 
far beyond the scope of this book!) The set of real numbers is related to the sets of rational 
numbers Q, integers Z, and natural numbers N like this:

N ⊂ Z ⊂ Q ⊂ R

The operations of addition, subtraction, and multiplication can be defined over R. If # repre-
sents any of these operations and x and y are elements of R, then:

x  # y ∈R

This is a fancy way of saying that whenever you add, subtract, or multiply a real number by 
another real number, you always get a real number. This is not generally true of division, expo-
nentiation (raising to a power), or taking a root. You can’t divide by 0, take 0 to the 0th power, 
or take the 0th root of anything and get a real number. Also, you can’t take an even-integer 
root of a negative number and get a real number.

Russian dolls

Now we can see the full hierarchy of number types. We started with the set of naturals, N.
Then we built the set of integers, Z, by introducing the notion of negative values. From there, 
we generated the set of rationals, Q, by dividing integers by each other. Now, we have found 
out about the set of irrationals, S, and the set of reals, R. The sets N, Z, Q, and R fit inside 
each other like Russian dolls:

N ⊂ Z ⊂ Q ⊂ R

The set S is a proper subset of R, but it’s “standoffish” in the sense that it does not allow any of 
the rationals, integers, or naturals into its “realm.” The Venn diagram of Fig. 9-2 shows how 
all these sets are related.

Later on, we’ll learn about a set of numbers that’s even larger than the reals. Those are the 
imaginary numbers and complex numbers. They result from taking the square roots of negative 
reals and adding those quantities to other real numbers.

Are you confused?
Take the interval with end points on the number line corresponding to 1 and 2, as shown in Fig. 9-1. It 
seems reasonable to think that there must be enough rational numbers (there are infinitely many, after all) 
to account for every possible point in this interval. If that were true, then you could take any point P in the 
interval and slice finer and finer intervals around it, with a rational number at the middle of each interval, 
until finally you got an interval with P right in the middle. But you can’t always do this!
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S Q

R = Everything inside the large rectangle

Z N

S

Q
N

Z

Figure 9-2 The relationship among the sets of real numbers (R),
irrationals (S), rationals (Q), integers (Z), and natural 
numbers (N).

You can define a point between 1 and 2 that doesn’t correspond to any rational number. Take a square 
measuring exactly 1 unit on each edge, known as a unit square, and place it on the number line so one 
corner is at the point for 0 and the other corner is on the line between the points for 1 and 2, as shown in 
Fig. 9-3. The opposite corner of the square falls exactly on the point for the square root of 2, because the 
diagonal of a unit square is precisely 21/2 units long. (That fact comes from basic geometry.) The number 
21/2 is irrational.

If you build a line using only the points corresponding to rational numbers, that line will be full of “holes.”

Are you still confused?
The rational numbers, when depicted as points along a line, are “dense,” but not as dense as the points on 
a line can get. No matter how close together two rational-number points on a line might be, there is always 
another rational-number point between them. But there are points on a continuous geometric number line that 
don’t correspond to any rational quantity. The set of reals is more “dense” than the set of rational numbers.

“All right,” you say. “This game is strange, but I’ll play along. How many times more dense is the real-
number line than the rational line? Twice? A dozen times? A hundred times?” The answer might astonish 
you. The set of real numbers, when assigned to points on a line, is infinitely more “dense” than the set of 
rational numbers.

Here’s a crude analogy. Suppose you’re exploring the “planet Maths” and you stumble across a rational-
number line and a real-number line lying in a field. Both lines resemble straight, infinitely long, thin, rigid 
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wires. The rational-number line is gray. When you pick it up, you find that it’s weightless. The real-number 
line is black. When you lift it, you discover that it’s heavy. The real-number line contains more “stuff.”

Here’s a challenge!
Let’s try a little exercise that involves some plain-language logic, some set theory, and some Venn dia-
gram reading skill. Which of the following statements are true, based on our knowledge of the number 
hierarchy?

• All rational numbers are real.
• All integers are real.
• Some integers are irrational.
• Some irrational numbers are real.
• All irrational numbers are real.

Solution
We can figure all of these out by looking at Fig. 9-2. The answers, bullet-by-bullet, are as follows.

• Set Q is entirely contained in set R. Therefore, all rationals are real.
• Set Z is entirely contained in set R. Therefore, all integers are real.
• Set Z is completely separate from set S. Therefore, no integers are irrational.
• Set S has elements in common with set R. Therefore, some irrationals are real.
• Set S is entirely contained in set R. Therefore, all irrationals are real.

0

1

2

Positive-
number
line

This point
corresponds to
the square root of 2

1 unit

1
 u

n
it

Figure 9-3  If you take a unit square and place it diagonally along 
the positive-number line with one corner at the point 
for 0, the opposite corner is at the point for 21/2,
which is irrational.
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More About Irrationals and Reals
Let’s explore “infinity” for a few minutes. Then we’ll prove that the square root of 2 is irratio-
nal. Get into the mood for some serious abstract thinking!

Number lists

Mathematicians use the symbol ℵ0 (called aleph-null ) to describe the number of elements in 
the set N of natural numbers. This is the same as the number of elements in the set Z of inte-
gers, as we saw in the solution to the final practice exercise in Chap. 3. We can create “implied 
lists” of both sets, and be confident that if we go far enough out, we’ll always hit any natural 
number or integer we care to choose.

Cardinality of a set

The number of elements in a set is called the cardinality of the set. The cardinality of N is ℵ0,
and the cardinality of Z is also ℵ0. Even the elements of Q, the set of rationals, can be defined 
in terms of an “implied list.” Figure 9-4 is an example. So, as counterintuitive as it may seem, 
the cardinality of Q is the same as the cardinality of N or Z, that is, ℵ0. If we can make an 
“implied list” of the elements in an infinite set, that set is said to be denumerably infinite (or 
simply denumerable), and by definition it has cardinality ℵ0.

The irrationals and reals can’t be “listed”

The elements of S or R cannot be denoted in any type of list. We can’t even make an “implied 
list” of all the nonnegative irrational numbers smaller than 1 in decimal-expansion form. 
Table 9-1, and the following explanation, should give you some idea of why this is so.

Suppose we try to list the irrational numbers between 0 and 1 (including 0, but not 1) by 
writing down the numerals in their expanded-decimal forms. To the left of the decimal point, 
every numeral will have a single 0 and nothing else. The first numeral will have an endless 
string of digits from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} to the right of the decimal point. Let’s 
call those digits a11, a12, a13, and so on. The second number will have an endless string of digits 
that we can call a21, a22, a23, and so on, different from the first string. We can keep on listing 
irrational numbers like this forever. The nth number in our list (corresponding to the nth row 
in Table 9-1) will be of the form

0.an1an2an3 ...

Now imagine that we have listed one irrational number for every possible value of n. (This 
could not actually be done by any mortal human, because it would take forever. But in the 
world of mathematics, our imaginations let us do infinitely many tasks in a finite amount 
of time!) Suppose that no two irrational numbers in this list are the same. It is tempting to 
believe that this list of irrational numbers, taking the form of a matrix that extends forever to 
the right and downward from what we see in Table 9-1, must contain all possible irrationals. 
After all, there are infinitely many of them, and we haven’t listed any of them twice.

But no! Even this infinite list is not complete. There are still more irrationals. Here is one 
of them. Imagine building an irrational number of this form:

0.b1b2b3 ...



130 Irrational and Real Numbers

where the digit b1 is different from a11 in the first list entry, the digit b2 is different from a22 in 
the second list entry, the digit b3 is different from a33 in the third list entry, and so on forever. 
This new irrational number cannot be in the list denoted by Table 9-1. No matter which of 
the entries in that list (with the a’s and subscripts) we choose, our new number (with the b’s 
and subscripts) has at least one digit that doesn’t match.

When we can’t make a list—or even concoct an infinitely long “implied list” in the math-
ematical cosmos—of all the elements of a set, the set is said to be non-denumerable.

Are you confused?
The notion of non-denumerability is difficult to grasp. Don’t feel bad if you don’t fully understand it. It’s 
a little like trying to envision space with more than three dimensions. Some things that can be defined in 

Figure 9-4  All the elements in the set of rational numbers can be 
arranged in an “implied list.” Follow the dashed “square 
spiral” in this two-dimensional list, starting at the center 
and going outward as shown. Eventually, you’ll hit the 
box for any ratio of integers that can exist.



mathematics, and in which problems can be neatly worked out, simply defy any attempt at “seeing them in 
the mind’s eye.” It’s good enough to remember that there are more real numbers than rational numbers—a 
lot more.

It can help if you stop thinking of “infinity” as something you can count toward. Instead, think of 
“infinity” as an expression of the size of a set. The cardinality of the set R of real numbers is greater than 
ℵ0, the cardinality of N, Z, or Q.

You might wonder if there are any “infinities” larger than the cardinality of the set of reals. The mathema-
tician Georg Cantor’s answer to this question was “Yes, infinitely many!” He called these “infinities” transfi-
nite cardinals. During his lifetime, Cantor was scorned by some of his fellow mathematicians for his theory 
of transfinite cardinals. Now they are commonly accepted in advanced mathematics.

Here’s a big challenge!
You are now invited to follow along with an “extra-credit” proof. It will take some time and effort to 
understand it. But why not try it? It doesn’t involve anything more complicated or sophisticated than facts 
of arithmetic you already know. Let’s prove that the value of 21/2 cannot be represented as a ratio of integers 
in lowest terms, and therefore that it’s an irrational number. We’ll need two lemmas. Let’s accept them on 
faith. Both of them can be proved, but that would be a distraction right now.

• The square of an integer is always an integer. Let’s call this the integer-squared rule.
• The square of an odd integer is always an odd integer. Let’s call this the odd-integer-squared rule.

Solution
Whenever we suspect that a proof might be involved, it’s tempting to try reductio ad absurdum. Let’s use it 
now. Table 9-2 does the job. If you can’t follow this proof as a whole, don’t worry. Try to understand each 
step, one at a time.

Table 9-1. If we try to create an “implied list” of all the irrational numbers 
between 0 and 1 as endless, nonrepeating decimal expansions, we are destined 

to fail. Each digit in the bottom row (b with subscript) is chosen so that it’s 
different from the boldface digit above it in the same column (a with subscript). 

Mathematically, for every positive integer subscript n in the table, bn ≠ ann,
the endless decimal 0.b1b2b3 ... can’t be in the “a” list, even though that list is 

infinitely long.

0 . a11 a12 a13 a14 a15 a16 a17 →
0 . a21 a22 a23 a24 a25 a26 a27 →
0 . a31 a32 a33 a34 a35 a36 a37 →
0 . a41 a42 a43 a44 a45 a46 a47 →
0 . a51 a52 a53 a54 a55 a56 a57 →
0 . a61 a62 a63 a64 a65 a66 a67 →
0 . a71 a72 a73 a74 a75 a76 a77 →
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ →
0 . b1 b2 b3 b4 b5 b6 b7 →
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Table 9-2. An S/R proof that 21/2 is not a rational number.

Statements Reasons

Assume 21/2 is rational We begin with this statement and will prove it false
The quantity 21/2 can be represented 
  as a ratio of two integers, p and q,
in lowest terms

Definition of rational number

21/2 = p /q This is a mathematical statement of the claim made above
(21/2)2 = (p /q)2 Square both sides of the equation in the previous line
2 = p2/q2 Use arithmetic to manipulate the equation in the previous line
2q2 = p2 Multiply each side of the equation in the previous line by q2

q2 = p2/2 Divide each side of the equation in the previous line by 2
We know q is an integer, so q2 is 
 an integer

Integer-squared rule

We know p is an integer, so p2 is an 
 integer

Integer-squared rule

p2/2 is an integer We know this because q2 = p2/2, and q2 is an integer
p2 is an even integer This follows from the definition of even integer
p is an even integer According to the odd-integer-squared rule, if p were odd, 

 then p2 would be odd; but p2 is even
p /2 is an integer This follows from the definition of even integer
Call p /2 = t This will make things a little simpler
p = 2t Multiply each side of the equation in the previous line by 2
2q2 = (2t)2 Substitute 2t for p in the equation 2q2 = p2 from earlier in 

 this proof
2q2 = 4t2 Simplify the right-hand side of the equation in the previous line
q2/2 = t2 Divide each side of the equation in the previous line by 4
We know t is an integer, so t2 is an 
 integer

Integer-squared rule

q2/2 is an integer This follows from the previous two lines
q2 is an even integer This follows from the definition of even integer
q is an even integer According to the odd-integer-squared rule, if q were odd,

 then q2 would be odd; but q2 is even
q /2 is an integer This follows from the definition of even integer
The quotient p /q is a ratio of 
 integers in lowest terms

Part of the assumption we made at the beginning of this proof

p /2 is an integer, and q /2 is an integer We have proven both of these facts
(p /2)/(q /2) is a ratio of integers This follows from the statement immediately above this line
The ratio p /q is not given in 
 lowest terms

(p /2)/(q /2) is in lower terms than p /q, but the two 
 expressions represent the same quantity

We have produced a logical absurdity The preceding line contradicts our original assumption 
 about p /q

21/2 is not rational Reductio ad absurdum
Q.E.D. Mission accomplished



How Real Variables Behave
Most of the properties of the natural numbers, integers, and rationals also apply to the reals. 
To get ready for the algebra to come, let’s put together a collection of these properties. All the 
old rules are here, along with a few new or expanded ones. Don’t try to memorize these rules. 
Just look them over for a little while. You can always come back to this section for reference 
if you get stuck later on.

Naming variables

You’ll notice that some of the variables here have different letter names than we used before. 
In algebra, real variables are usually given letters from near the end of the alphabet, especially 
t and after. Other letters more often represent natural-number variables (n and m are espe-
cially common), integer variables, and rational-number variables. But there’s no absolute law 
about this.

Additive identity

For every real number x,

x + 0 = x

and

0 + x = x

Multiplicative identity

For every real number x,

x1 = x

and

1x = x

Additive inverse

For every real number x,

x + (−x) = 0

and

(−x) + x = 0
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Multiplicative inverse (reciprocal)

For every nonzero real number x,

x (1/x) = 1

and

(1/x)x = 1

Commutative law for addition

For all real numbers x and y,

x + y = y + x

Commutative law for multiplication

For all real numbers x and y,

xy = yx

Associative law for addition

For all real numbers x, y, and z,

(x + y) + z = x + (y + z)

Associative law for multiplication

For all real numbers x, y, and z,

(xy)z = x ( yz)

Distributive laws

For all real numbers x, y, and z,

x ( y + z) = xy + xz

and

(x + y)z = xz + yz



These rules also work for subtraction:

x (y − z) = xy − xz

and

(x − y)z = xz − yz

Variants of these rules work for division as long as the divisor (or denominator) consists of a 
single nonzero variable, and never a sum or difference. Therefore

(x + y)/z = x /z + y /z

and

(x − y)/z = x /z − y /z

Zero numerator

For all nonzero real numbers x, if 0 is divided by x, then the quotient is equal to 0:

0/x = 0

Zero denominator

For all real numbers x, if x is divided by 0, then the quotient is undefined:

x /0 = (undefined)

Multiplication by zero

Whenever a real number x is multiplied by 0, the product is equal to 0:

x0 = 0

and

0x = 0

0th power

Whenever a nonzero real number x is taken to the 0th power, the result is equal to 1:

x 0 = 1   when x ≠ 0
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Product of signs

When two real numbers with plus signs (meaning positive, or larger than 0) or minus signs 
(meaning negative, or less than 0) are multiplied by each other, the following rules apply:

(+)(+) = (+)
(+)(−) = (−)
(−)(+) = (−)
(−)(−) = (+)

Quotient of signs

When two real numbers with plus or minus signs are divided by each other, the following 
rules apply:

(+) / (+) = (+)
(+) / (−) = (−)
(−) / (+) = (−)
(−) / (−) = (+)

Power of signs

When a real number with a plus sign or a minus sign is raised to a positive integer power, n,
the following rules apply:

 (+)n = (+)
 (−)n = (−) if n is odd
 (−)n = (+) if n is even

Reciprocal of reciprocal

For all nonzero real numbers, x, the reciprocal of the reciprocal is equal to the original number:

1/(1/x) = x   when x ≠ 0

More Rules for Real Variables
Here are some more sophisticated rules for expression morphing. As with the facts in the 
previous section, you don’t have to try to memorize these. It can help if you work out a few 
examples using numbers in place of the variables. Some of the restrictions here, in which 
variables are not allowed to equal 0, are a little stronger than necessary to keep things straight-
forward and to be sure we stay safe!



Product of sums

For all real numbers w, x, y, and z,

(w + x)( y + z) = wy + wz + xy + xz

Cross multiplication

For all real numbers w, x, y, and z where neither x nor z is equal to 0,

w /x = y /z  if and only if wz = xy

Reciprocal of product

For all nonzero real numbers x and y,

1/(xy) = (1/x)(1/y)

This can also be written as

(xy)−1 = x−1y−1

Product of quotients

For all real numbers w, x, y, and z where x ≠ 0 and z ≠ 0,

 (w /x)(y /z) = (wy)/(xz)

Reciprocal of quotient

For all nonzero real numbers x and y,

1/(x /y) = y /x

This can also be written as

(x /y)−1 = y /x

Quotient of products

For all real numbers w, x, y, and z where x ≠ 0, y ≠ 0, and z ≠ 0,

 (wx)/( yz) = (w /y)(x /z)
 = (w /z)(x /y)
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Quotient of quotients

For all real numbers w, x, y, and z where x ≠ 0, y ≠ 0, and z ≠ 0,
 (w /x)/(y /z) = (w /x)(z /y)
 = (w /y)(z /x)
 = (wz)/(xy)

Sum of quotients

For all real numbers w, x, y, and z where x ≠ 0 and z ≠ 0,

w /x + y /z = (wz + xy)/(xz)

Integer roots

Suppose that x is a positive real number. Also suppose that n is a positive integer. Then the nth
root of x can also be expressed as the 1/n power of x. The second root (or square root) is the 
same thing as the 1/2 power, the third root (or cube root) is the same thing as the 1/3 power, 
the fourth root is the same thing as the 1/4 power, and so on.

Rational-number powers

Suppose that x is a real number. Also suppose that m and n are integers, and n ≠ 0. Then

x m /n = (x m)1/n = (x 1/n)m

Negative powers

Let x be a nonzero real number. Let y be any real number. Then

x−y = (1/x) y = 1/(x y)

Sum of powers

For all nonzero real numbers x, y, and z,

x ( y+z) = x yx z

Difference of powers

For all nonzero real numbers x, y, and z,

x (y − z) = x y/xz

Product of powers

For all nonzero real numbers x, y, and z,

x yz = (x y)z = (x z)y



Quotient of powers

For all nonzero real numbers x, y, and z,

x y /z = (x y)1/z = (x 1/z)y

Power of product

For all nonzero real numbers x, y, and z,

(xy)z = x zy z

Power of quotient

For all nonzero real numbers x, y, and z,

(x /y)z = x z/y z

Power of reciprocal

Let x be a nonzero real number. Let y be any real number. Then

(1/x)y = 1/(x y)

Square of sum

For all real numbers x and y,

(x + y)2 = x 2 + 2xy + y 2

Square of difference

For all real numbers x and y,

(x − y)2 = x 2 − 2xy + y 2

Are you confused?
Some of the rules above involve real-number exponents. That can include irrationals! You may wonder 
how can anybody define such a thing as a number raised to the power of pi (π), for example. You’ll under-
stand irrational exponents better when you learn about logarithmic and exponential functions in Part 3. 
For now, here’s a little glimpse into the mystery.

Imagine that you stumble across the expression 2π in some mathematical adventure. The value of π, to 
five decimal places, is 3.14159, but you know it can’t be expressed exactly as a ratio of integers, because it 
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is irrational. But you can “zoom in” on it. Divide out the fractions 59/19 and 60/19 with a calculator to 
obtain their decimal expansions. These are both rational numbers, and you’ve learned how you can take 
any number to a rational-number power. If you expand them to five decimal places, and then display π
to the same number of places (using a calculator with a π key), you will see that π is between these two 
rationals:

 59/19 = 3.10526 ...

 π = 3.14159 ...

 60/19 = 3.15789 ...

That means

59/19 < π < 60/19

You should now be able to imagine, without too much trouble, that

259/19 < 2π < 260/19

The “mystery number” is in that interval somewhere. It’s a real number, and it corresponds to its own 
special point on a real-number line. You can indeed raise a number, variable, or expression to an irrational 
power.

Here’s a challenge!
Suppose x, y, and z are real numbers, with x ≠ 0 and y ≠ 0. Show that if you take x to the yth power and 
then take the result to the zth power, you do not necessarily get the same result as if you take x to the 
power of y z.

Solution
All we have to do is find a numerical example where the two expressions don’t agree. There are plenty! Let 
x = 2, y = 9, and z = 1/2. Then xy = 29 = 512. If we raise 512 to the 1/2 power, we get 22.627 ..., an endless, 
nonrepeating decimal. Now consider y z. That’s 91/2, or 3. If we raise x, which is 2, to the power of 3, we get 8.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. A. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Which of the following quantities can we reasonably suspect is irrational?
(a) 163/4

(b) (1/4)1/2

(c) (−27)−1/3

(d) 271/2



 2.   Suppose we have an irrational number and we display the first few digits of its endless 
nonrepeating decimal expansion. If we multiply this number by 10, is the result still 
irrational? What if we multiply it by 100, or 1,000, or any natural-number power of 
10? Will the results always be irrational?

 3.  What is the cardinality of
(a) The set of even natural numbers?
(b) The set of naturals divisible by 10 without a remainder?
(c) The set of naturals divisible by 100 without a remainder?
(d) The set of naturals divisible by any natural power of 10 without a remainder?

 4.  Consider this equation in real variables x and y:

36x + 48y = 216

   How can we simplify this so it has the minimum possible number of symbols (variables 
and digits)?

 5.   The nonnegative square root of 18 can be simplified, or resolved, into a product of a 
natural number and an irrational number. What are these numbers?

 6.   The nonnegative square root of 83 cannot be resolved into a product of a natural 
number and an irrational number, other than the trivial case 1 × 831/2. How can we tell?

 7.   The numbers 501/2 and 21/2 are both irrational. But the ratio of 501/2 to 21/2 is a natural 
number. What natural number?

 8.   Using the sum of quotients rule, add the fractions 7/11 and −5/17, and then reduce this 
sum to lowest terms.

 9.  Using the product of sums rule, multiply out the product (x + y)(x − y).

10.  Using the rules we have learned so far, derive a formula for multiplying out the 
following expression, where u, v, w, x, y, and z are real numbers:

(u + v + w)(x + y + z)
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CHAPTER

1 0

Review Questions
and Answers

Part One
This is not a test! It’s a review of important general concepts you learned in the previous nine 
chapters. Read it though slowly and let it “sink in.” If you’re confused about anything here, or 
about anything in the section you’ve just finished, go back and study that material some more.

Chapter 1

Question 1-1

What’s the difference between a number and a numeral?

Answer 1-1

A number is an abstraction. Numerals are tangible or physical symbols that represent num-
bers, such as 30 or 7 as they appear on this page. A numeral is not a number, just as your name 
is not you.

Question 1-2

In the Roman numeration system, how would we write the equivalents of the following decimal 
numerals?

(a) 10 (b) 30 (c) 40 (d) 50
(e) 100 (f ) 300 (g) 400 (h) 600

Answer 1-2

The Roman equivalents are:

(a) X (b) XXX (c) XL (d) L
(e) C (f ) CCC (g) CD (h) DC

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Question 1-3

The Hindu-Arabic system uses the numeral 0 to represent a quantity of nothing. Why is this 
significant?

Answer 1-3

The numeral 0 serves as a placeholder when writing numerals to represent large numbers. It 
makes arithmetic easier than it was with the Roman system, or with systems that used simple 
counting. Eventually, it made higher mathematics, such as algebra, possible.

Question 1-4

What’s the difference between an “English billion” and a “U.S. billion”?

Answer 1-4

In England, the term “billion” usually refers to the quantity represented by the numeral 
1,000,000,000,000. In the United States, it means the quantity represented by 1,000,000,000. 
The “English billion” is called a “trillion” in the United States.

Question 1-5

What’s the difference between the decimal, binary, octal, and hexadecimal numeration 
systems?

Answer 1-5

The decimal system works in base ten, where the numeral 10 represents the number of dots 
in the following group:

 • • • • • • • • • •

If we use decimal numerals to represent quantities, then the binary system works in base 2, the 
octal system works in base 8, and the hexadecimal system works in base 16.

Question 1-6

The hexadecimal system needs some extra digits besides the usual 0 through 9 to denote num-
bers. What are these digits, and what are their decimal equivalents?

Answer 1-6

Here are the extra digits and their decimal equivalents:

• Hexadecimal A stands for decimal 10.
• Hexadecimal B stands for decimal 11.
• Hexadecimal C stands for decimal 12.
• Hexadecimal D stands for decimal 13.
• Hexadecimal E stands for decimal 14.
• Hexadecimal F stands for decimal 15.
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Question 1-7

In the octal numeration system, what follows 7? What follows 47? What follows 77? What 
follows 577?

Answer 1-7

In the octal system, 7 is followed by 10, 47 is followed by 50, 77 is followed by 100, and 577 
is followed by 600.

Question 1-8

What is the main advantage of the binary numeration system?

Answer 1-8

It has only two states, which can be represented by the on/off states of simple switches. This 
makes the binary system ideal for use in electronic systems such as computers.

Question 1-9

In the binary numeration system, what follows 10? What follows 100? What follows 111? 
What follows 1101?

Answer 1-9

In the binary system, 10 is followed by 11, 100 is followed by 101, 111 is followed by 1000, 
and 1101 is followed by 1110. Note that there are no commas in large binary numerals, as 
there usually are in large decimal numerals.

Question 1-10

In the hexadecimal numeration system, what follows 10? What follows FF? What follows 
999? What follows FFF?

Answer 1-10

In the hexadecimal system, 10 is followed by 11, FF is followed by 100, 999 is followed by 
99A, and FFF is followed by 1,000.

Chapter 2

Question 2-1

What’s the difference between a set and an element?

Answer 2-1

A set is a collection of elements. The elements of a set are also called its members. If we want 
to call a number or variable x an element of a set X, then we write x ∈X. We can also say that 
x belongs to X, or that x is in X. If some other number or variable y is not an element of set X,
then we write y ∉ X. A set can be an element of another set.



Question 2-2

What’s the difference, if any, between the following sets?

 A = {x, y, z }

 B = {z, y, x }

 C = {y, z, x }

 D = {x, y, z, y, x }

 E = {y, x, z, z, z, z, z, ...}

Answer 2-2

These sets are all the same. When the elements of a set are listed, the order of the list isn’t 
important. Once we’ve listed something as an element of a set, we can list it again, or 10 times 
more, or even infinitely many times, and it doesn’t matter.

Question 2-3

Imagine two sets, one called R and the other called S. They share three elements, called x, y,
and z. However, they both contain elements other than x, y, or z. What name can we give to 
the set {x, y, z}?

Answer 2-3

The set {x, y, z} contains all the elements that belong to both R and S. By definition, the set 
{x, y, z} is the intersection of R and S, written R ∩ S.

Question 2-4

What does the entire gray shaded region in Fig. 10-1 represent?

Answer 2-4

This region represents the set of all elements in set P, set Q, or both. That’s the union of sets 
P and Q, written P ∪ Q.

P

Q

Figure 10-1  Illustration for 
Questions and 
Answers 2-4 and 2-5.
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Question 2-5

What does the hatched region in Fig. 10-1 represent?

Answer 2-5

It portrays the set of elements belonging to both P and Q. That’s the intersection of the two 
sets, written P ∩ Q.

Question 2-6

What’s the union of two disjoint sets X and Y ? What’s the intersection of two disjoint sets X
and Y ?

Answer 2-6

The union of two sets X and Y is the set of all elements in either X or Y. Their intersection is 
the set of elements in both X and Y. If X and Y are disjoint, then there are no elements belong-
ing to them both, so the intersection is the null set.

Question 2-7

What’s the union of two congruent sets? The intersection of two congruent sets?

Answer 2-7

By definition, if two sets X and Y are congruent, then they have exactly the same elements. 
Every element in X is also in Y, and every element in Y is also in X. The two sets overlap 
totally. Their union is the set of all elements in either X or Y. That’s the same as either X or Y
by itself. Their intersection is the set of elements in both X and Y. That’s also the same as either 
X or Y by itself. In this case, all the following sets are identical:

X
Y

X ∪ Y
X ∩ Y

Question 2-8

Can a set be a subset of itself ? A proper subset of itself ?

Answer 2-8

Any set is a subset of itself. But no set is a proper subset of itself. By definition, a proper subset 
of any set S can’t contain all of the elements in S.

Question 2-9

Is there any set that is a subset of every possible set?

Answer 2-9

Yes. The null set is a subset of any set we can imagine, even itself.



Question 2-10

How can we describe the relationship between the following sets? How would we write it in 
symbolic form?

A = {4, 5, 6, 7, 8, 9, 10, ...}
B = {7, 8, 9, 10, 11, 12, ...}

Answer 2-10

In this case, B is a proper subset of A. That’s because every element in B is also in A, but there 
are some elements in A that are not in B. We write this fact as B ⊂ A.

Chapter 3

Question 3-1

The natural numbers are sometimes defined in terms of sets. How can we do this?

Answer 3-1

We can define the number 0 as the set containing nothing. That’s the null set:

0 = { } = ∅

Once we’ve defined the number 0, then we can define the number 1 as the set containing the 
number 0, like this:

1 = {{ }} = {∅} = {0}

After that, we can build the rest of the natural numbers upon each other:

2 = {0, 1}
3 = {0, 1, 2}

4 = {0, 1, 2, 3}
↓

n + 1 = {0, 1, 2, ..., n}
↓

and so on, forever

Question 3-2

How can we write the natural numbers 0 through 4 purely in terms of set braces and the null 
set symbol?

Answer 3-2

We start with 0, which is equal to ∅ by definition. The numbers are built upon each other as 
sets within sets, like this:

0 = ∅
1 = {0} = {∅}
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2 = {0, 1} = {∅, {∅}}
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}

4 = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

Question 3-3

How is the set of natural numbers symbolized? What elements does it contain?

Answer 3-3

In this book, we symbolize the set of natural numbers as N, and define it as

N = {0, 1, 2, 3, 4, ...}

The three dots, called an ellipsis, tell us that the sequence goes on without end. The set N is 
also known as the set of whole numbers. In some texts, N is defined without including 0:

N = {1, 2, 3, 4, 5, ...}

This is also called the set of counting numbers.

Question 3-4

According to the set-based definition of the natural numbers 0, 1, 2, 3, and so on, what num-
ber is represented by the entire set N ?

Answer 3-4

Mathematicians call this an infinite ordinal or transfinite ordinal, and denote it using the 
lowercase Greek letter omega (ω). We can imagine it as a form of “infinity.”

Question 3-5

How can we generate the set of even natural numbers (call it Neven) from the set N of natural 
numbers? How can we generate the set of odd natural numbers (call it Nodd) from Neven?

Answer 3-5

We can generate Neven by taking each element of N and multiplying it by 2. We can generate 
Nodd from Neven by taking every element of Neven and adding 1.

Question 3-6

In the set N, what is a prime number? What’s a composite number? Are there any natural 
numbers that are neither prime nor composite? Are there any natural numbers that are both 
prime and composite?

Answer 3-6

A prime number is a natural number larger than 1 (in other words, 2 or larger) that can only 
be factored into a product of itself and 1. A composite number is a natural number that’s 
a product of two or more primes. All the nonprime numbers larger than 1 are composite. 
According to these definitions, the numbers 0 and 1 are neither prime nor composite. No 
natural number can be both prime and composite.



Question 3-7

In the set N, what is a perfect square? Can any perfect square be prime?

Answer 3-7

A perfect square is the result of multiplying a natural number by itself. The first few perfect 
squares are 0, 1, 4, 9, 16, 25, 36, 49, and 64. No perfect square can be prime. By definition, 
0 and 1 are not prime. Any perfect square larger than 1 can be broken down into a product of 
two or more primes, so it’s composite.

Question 3-8

How can we write down the set Z of integers as an “implied, two-ended list”? As an “implied, 
one-ended list”? 

Answer 3-8

Here’s an “implied, two-ended list” that can give any reader the basic idea concerning the 
elements of Z:

Z = {..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...}

To create the “implied, one-ended list,” we start with 0 and then go through the positive and 
negative integers alternately, like this:

Z = {0, 1, −1, 2, −2, 3, −3, 4, −4, ...}

Question 3-9

How can we quickly and easily tell if a large natural number is divisible by 2, 3, 5, 9, or 10 
without a remainder?

Answer 3-9

A natural number is divisible by 2 if its last digit is 0, 2, 4, 6, or 8. A natural number is divis-
ible by 3 if the sum of its digits is a natural-number multiple of 3, by 5 if its numeral ends in 
0 or 5, by 9 if the sum of its numeric digits is a natural-number multiple of 9, and by 10 if its 
numeral ends in 0.

Question 3-10

How can we find the prime factors of a large natural number n?

Answer 3-10

We start by finding the square root of n. We ignore the digits after the decimal point, so we 
have a whole number. We add 1 to that whole number and call the result s. Then we 
divide the original number n by all the primes less than or equal to s, one by one, starting 
with the largest prime and working our way down. If we ever get a whole-number quotient, 
then we know that the divisor and the quotient are both factors of n. Sometimes the quotient 
is prime, and sometimes it is not. If it isn’t prime, then it can be factored down further. We 
keep dividing n by smaller and smaller primes until we get down to 2. Once we’ve found all 
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the primes smaller than s that divide n without leaving a remainder, we have found the prime 
factors of n. Some of these prime factors may occur more than once.

Chapter 4

Question 4-1

What is the meaning of the term absolute value with respect to integers?

Answer 4-1

The absolute value is the extent to which a number differs from 0. If we imagine the integers 
as points on a straight line with a “number reflector” passing through the point for 0, then the 
absolute value of any integer is its distance from the “number reflector.” Figure 10-2 shows a 
couple of examples. The absolute value of an integer is always positive or 0, because it is an 
expression of distance without taking direction into account. The absolute value of any natural 
number is equal to that natural number. The absolute value of any negative integer can be 
obtained by removing the minus sign.

Question 4-2

Suppose we have two integers a and b. How can we define a + b on a vertical number line 
where values increase as we move upward?

Answer 4-2

We start by finding the point on the line that corresponds to a. Then we move upward along 
the line for a distance of b units. We end up at the point for a + b.

0

1

2

3

1

2

3-

-

-“Number reflector”

Absolute
value
is 3

Absolute
value
is 3

Figure 10-2 Illustration for Answer 4-1.



Question 4-3

Suppose we have two integers c and d. How can we define c − d on a vertical number line 
where values increase as we move upward?

Answer 4-3

We start by finding the point on the line that corresponds to c. Then we move downward 
along the line for a distance of d units. We end up at the point for c − d.

Question 4-4

How do signs work when adding and subtracting positive and negative integers?

Answer 4-4

When we add a positive or subtract a negative, the result grows larger. When we subtract a 
positive or add a negative, the result grows smaller. For any two integers p and q,

p + (−q) = p − q

and

p − (−q) = p + q

Question 4-5

Suppose that we start with −6, add −8 to it, then subtract 12 from that, then subtract −5 from 
that, then add −2 to that, and finally subtract −23 from that. What’s the result?

Answer 4-5

Let’s work this through in steps, paying careful attention to signs and using parentheses when 
we need them:

−6 + (−8) = −6 − 8 = −14

−14 − 12 = −26

−26 − (−5) = −26 + 5 = −21

−21 + (−2) = −21 − 2 = −23

−23 − (−23) = −23 + 23 = 0

Question 4-6

What does the commutative law tell us about the sum of two integers? What does the associa-
tive law tell us about the sum of three integers? What do these two laws, taken together, allow 
us to do?

Answer 4-6

The commutative law tells us that when we add two integers, we can do it in either order and 
the sum will be the same. If a and b are integers, then

a + b = b + a
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The associative law says that we can group a sum of three integers in a certain order by twos 
either way, and the result will always be the same. If a, b, and c are integers, then

(a + b) + c = a + (b + c)

In combination, the commutative and associative laws allow us to arrange and group a sum of 
integers in any possible way, and the result will always be the same.

Question 4-7

Does the commutative law for addition apply to sums of more than two integers? Does the 
associative law apply for sums of more than three integers?

Answer 4-7

Both of these laws will work for sums having as many addends as we want, as long as the 
number of addends is finite.

Question 4-8

Does the commutative law work for subtraction?

Answer 4-8

We cannot apply the commutative law to subtraction problems and expect valid results. Let’s 
look at these two subtractions:

5 − 10 = −5

but

10 − 5 = 5

Question 4-9

Does the associative law work for subtraction done twice?

Answer 4-9

We can’t apply the associative law to subtraction done twice and expect valid results. Here’s an 
example showing its failure:

(5 − 10) − 15 = −5 − 15 = −20

but

 5 − (10 − 15) = 5 − (−5)
 = 5 + 5
 = 10



Question 4-10

Suppose a, b, and c are integers and we see the expression a − b + c without any parentheses 
in it. Can we use parentheses for grouping, apply the associative law, and expect valid results 
in this situation?

Answer 4-10

No! Here’s an example:

(5 − 10) + 15 = −5 + 15 = 10

but

5 − (10 + 15) = 5 − 25 = −20

Chapter 5

Question 5-1

When we multiply a positive integer c by another positive integer d, it’s the equivalent of start-
ing with c and then adding c repeatedly a certain number of times. How many times? Give 
an example.

Answer 5-1

The product cd is equivalent to starting with c and then adding c a total of (d − 1) times. For 
example, we get 5 × 12 when we start with 5 and then add 5 over and over, a total of 11 times. 
Another way to look at this is to imagine that 5 × 12 is what we get when we start with 0 and 
then add 5 repeatedly, a total of 12 times.

Question 5-2

What happens if we multiply a positive integer p by a negative integer n? How can we describe 
that in terms of repeated addition?

Answer 5-2

It works the same way as it does when adding a positive integer. The only difference is that, as 
we keep adding the negative integer repeatedly, the sum gets smaller instead of larger.

Question 5-3

In which of the following quotients is there a remainder?

(a) 20/10 (b) 33/11 (c) 51/17 (d) 95/19
(e) 105/21 (f ) 116/29 (g) 218/31 (h) 301/43

Answer 5-3

There is a remainder only in case (g). It’s easy to see this by using a calculator to divide the 
numerator by the denominator in each of the expressions.
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Question 5-4

Suppose a mathematician says, “The operations of addition, subtraction, and multiplication 
are closed over the set of integers, but the operation of division is not.” What does he/she 
mean by this?

Answer 5-4

He/She means that we always get an integer if we add, subtract, or multiply one integer by 
another. But he/she also warns us that we don’t always get an integer if we divide one integer 
by another.

Question 5-5

Which of the following “rules” is actually false? How can its wording be changed to make it 
right?

(a)  When we multiply a positive integer by 2 or more, the result stays positive and the 
absolute value increases.

(b)  When we divide a positive integer by 2 or more, the result stays positive and the absolute 
value decreases.

(c)  When we multiply a negative integer by −2 or less, the result stays negative and the 
absolute value increases.

(d)  When we divide a negative integer by −2 or less, the result becomes positive and the 
absolute value decreases.

Answer 5-5

All of the above “rules” are true except (c). Remember that if we multiply a negative by a 
negative, we get a positive! The correct way to state this rule would be, “When we multiply a 
negative integer by −2 or less, the result becomes positive and the absolute value increases.”

Question 5-6

Sometimes we’ll come across an expression that doesn’t contain parentheses, brackets, or 
braces. This can be confusing if we don’t know the order in which the operations should be 
done. Suppose we see this:

6 × 8 − 14/2 + 3

What number does this represent?

Answer 5-6

Remember the rules for precedence of operations when we see expressions without parenthe-
ses. The steps go in this order:

• Do all the multiplications.
• Do all the divisions.
• Convert all the subtractions to negative additions.
• Do all the additions.



The product should be found first, and then the ratio. Then the subtraction should be changed 
to negative addition, and finally the additions should be done. This gives us

 6 × 8 − 14/2 + 3 = 48 − 14/2 + 3
 = 48 − 7 + 3
 = 48 + (−7) + 3
 = 41 + 3
 = 44

Question 5-7

How can we change the expression in Question 5-6 to indicate that the subtraction should be 
done first, then the multiplication, then the division, and finally the last addition? What will 
the result be then?

Answer 5-7

We should place an opening parenthesis to the left of the 8 and a closing parenthesis to the 
right of the 14, like this:

6 × (8 − 14)/2 + 3

Now we’ve isolated the subtraction problem so it must be done first. We don’t need to change 
it to negative addition in this case, because there’s no risk of ambiguity with the subtraction 
part alone inside the parentheses. We proceed like this:

 6 × (8 − 14)/2 + 3 = 6 × (−6)/2 + 3
 = −36/2 + 3
 = −18 + 3
 = −15

Question 5-8

What does the commutative law tell us about the product of two integers? What does the 
associative law tell us about the product of three integers? What do these laws, taken together, 
allow us to do?

Answer 5-8

The commutative law tells us that when we multiply two integers, we can do it in either order 
and the product will be the same. If a and b are integers, then

ab = ba

The associative law says that we can group a product of three integers in a certain order by 
twos either way, and the result will always be the same. If a, b, and c are integers, then

(ab)c = a(bc)

Taken together, the commutative and associative laws allow us to arrange and group a product 
of integers in any possible way, and the result will always be the same.
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Question 5-9

Does the commutative law for multiplication apply to products of more than two integers? 
Does the associative law apply for products of more than three integers?

Answer 5-9

Both of these laws will work for products having as many factors as we want, provided the 
number of factors is finite.

Question 5-10

What are the left-hand and right-hand distributive laws of multiplication over addition and 
subtraction? How do they work?

Answer 5-10

The distributive laws tell us how to work out products when one of the factors is a sum or 
difference. Imagine three integers a, b, and c. The left-hand distributive law of multiplication 
over addition says that

a(b + c) = ab + ac

The right-hand distributive law of multiplication over addition says that

(a + b)c = ac + bc

The left-hand distributive law of multiplication over subtraction says that

a(b − c) = ab − ac

The right-hand distributive law of multiplication over subtraction says that

(a − b)c = ac − bc

Chapter 6

Question 6-1

How can we express the following quotients in terms of an integer along with a proper 
fraction?

(a) 5/2 (b) −7/3 (c) 19/2
(d) −25/7 (e) 31/9 (f ) 100/(−11)

Answer 6-1

The problems can be worked out as follows.

(a)  The quotient is 2 with a remainder of 1 (out of 2). This is 2-1/2.
(b)  The quotient is −2 with a remainder of −1 (out of 3). This is −2-1/3.
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(c) The quotient is 9 with a remainder of 1 (out of 2). This is 9-1/2.
(d)  The quotient is −3 with a remainder of −4 (out of 7). This is −3-4/7.
(e) The quotient is 3 with a remainder of 4 (out of 9). This is 3-4/9.
(f )  The quotient is −9 with a remainder of 1 (out of −11). This is −9-1/11.

Remember that the short dashes, separating the integers from the fractions, are not minus 
signs! The minus signs are the longer dashes.

Question 6-2

Do the commutative and associative laws work for quotients or ratios?

Answer 6-2

Not in general. In most cases, we can’t apply the commutative or associative laws to quotients 
or ratios and get valid results.

Question 6-3

What is the “brute force” method of reducing a ratio or fraction to its lowest terms?

Answer 6-3

We begin by factoring both the numerator and denominator into products of primes. If the 
original numerator is negative, we attach an extra “factor” of −1, making sure all the prime 
factors are positive. If the original denominator is negative, we do the same thing with it. 
Next, we remove all the common prime factors from both the numerator and denominator. 
Then we multiply all the factors in the numerator together, and do the same thing with the 
factors in the denominator. If we end up with a negative denominator, we multiply both the 
numerator and the denominator by −1.

Question 6-4

How can we use the “brute force” method to reduce 462/561 to lowest terms?

Answer 6-4

First, we factor the numerator and denominator into products of primes. This can take a little 
while, but we eventually get

(2 × 3 × 7 × 11)/(3 × 11 × 17)

The common prime factors in the numerator and denominator are 3 and 11. When we 
remove these factors, we get

(2 × 7)/17

Multiplying out the factors in the numerator gives us 14/17. That’s the lowest form of 
462/561.
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Question 6-5

On the number line of Fig. 10-3, suppose a through e all represent ratios of integers. Which of 
these ratios, if any, would be proper fractions if written out with numerators and denominators?

Answer 6-5

The ratios represented by c and d would be proper fractions if written out. That’s because the 
absolute values of the numerators would be less than the absolute values of the denomina-
tors. In the ratios represented by a, b, and e, the absolute values of the numerators would be 
larger than the absolute values of the denominators. That means they’d be improper fractions 
if written out.

Question 6-6

How can we quickly add two fractions m /n and p /q, where m and p are integers, and n and q
are positive integers?

Answer 6-6

We can add these two fractions like this:

m /n + p /q = (mq + np)/nq

We can also express this in words:

• Multiply the numerator of the first fraction by the denominator of the second.
• Multiply the denominator of the first fraction by the numerator of the second.
• Add these two products together.
• Divide this sum by the product of the denominators.
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Figure 10-3  Illustration for 
Question and 
Answer 6-5.
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Question 6-7

How can we quickly subtract a fraction p /q from a fraction m /n, where m and p are integers, 
and n and q are positive integers?

Answer 6-7

The difference can be found this way:

m /n − p /q = (mq − np)/nq

Stated in words:

• Multiply the numerator of the first fraction by the denominator of the second.
• Multiply the denominator of the first fraction by the numerator of the second.
• Subtract the second product from the first.
• Divide this difference by the product of the denominators.

Question 6-8

How do we multiply a fraction m /n by a fraction p /q, where m and p are integers, and n and 
q are positive integers?

Answer 6-8

We multiply the numerators to get the numerator of the product, and multiply the denomina-
tors to get the denominator of the product. As a formula:

(m /n)(p /q) = mp /nq

Question 6-9

How do we divide a fraction m /n by a fraction p /q, where m and p are integers, p ≠ 0, and n
and q are positive integers?

Answer 6-9

First, we invert the second fraction, making it q /p. Then we multiply the numerators to get 
the numerator of the product, and multiply the denominators to get the denominator of the 
product. As a formula:

(m /n)/(p /q) = mq /np

Question 6-10

What sort of fraction do we have on the left-hand side of the equation in Answer 6-9?

Answer 6-10

This is a ratio of fractions, also known as a compound fraction. It’s a good idea to simplify 
expressions like this whenever we can (as the formula above shows), because compound frac-
tions can be awkward and confusing.
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Chapter 7

Question 7-1

What does it mean to raise a number to the power of 2? To the power of 3? To the power of n,
where n is any positive integer?

Answer 7-1

When we raise a number to the power of 2, we multiply it by itself. This is also called squar-
ing the number. When we raise a number to the power of 3, we multiply it by itself, and then 
multiply the result by the original number again. This is also called cubing the number. In 
general, if b is any number and we raise it to the power of n, we have

bn = b × b × b × ... × b (n times)

Question 7-2

What is an order of magnitude in the decimal system?

Answer 7-2

An order of magnitude is a way to express how many times larger or smaller a certain quantity 
is, in terms of absolute value, compared to another quantity. In the base-10 system:

• When quantities differ by one order of magnitude, then the absolute value of one 
quantity is 10 times larger than the absolute value of the other.

• When quantities differ by two orders of magnitude, then the absolute value of one 
quantity is 102, or 100, times larger than the absolute value of the other.

• When quantities differ by n orders of magnitude, then the absolute value of one quan-
tity is 10n times larger than the absolute value of the other.

Question 7-3

What is the 0th (or zeroth) power of a nonzero number?

Answer 7-3

When we raise any number except 0 to the power of 0, we get 1. The 0th power of 0 is not 
defined. So, for example, 3690 = 1 and (−87/16)0 = 1, but 00 is undefined.

Question 7-4

What’s the difference between a terminating decimal and an endless decimal? What’s the dif-
ference between an endless repeating decimal and an endless nonrepeating decimal?

Answer 7-4

A terminating decimal has a finite number of digits to the right of the decimal point. After 
that, they are no more nonzero digits. (If we want to add more digits, e.g., to indicate a cer-
tain level of accuracy in a physics experiment, then the digits will all be ciphers.) Here’s an 
example:

25-4/100 = 25.04
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Here’s an example of an endless repeating decimal:

43/99 = 0.43434343...

Here, the digit sequence 43 repeats forever. We can repeatedly write down the digit pair 43 to 
the right of the decimal point, keeping at it for hours, days, or years; but the resulting decimal 
expression never reaches the precise value of 43/99. Now let’s look at an example of an endless 
nonrepeating decimal:

π = 3.14159265...

The digits go on forever, but there is no pattern to them. We can let a computer grind out 
more and more digits, and the resulting decimal expression approaches (but never quite 
reaches) the exact value of π.

Question 7-5

How can we convert 356.0056034 into the sum of a whole number and a fraction?

Answer 7-5

We look to the left of the decimal point first. The entire string of numbers here is the integer 
356. Now we look to the right of the point. There are seven digits. That means the denomina-
tor of the fraction should be 107 or 10,000,000, and the numerator should be the entire string 
of digits after the decimal point. We get

0056034/10,000,000

for the fractional part. The ciphers at the left in the numerator are useless in the fractional 
notation, so we can take them out and add a comma to the digits that remain, getting

56,034/10,000,000

The entire number is the sum of the integer part and the fractional part:

356 + 56,034/10,000,000

Question 7-6

When a number is written in decimal form, is the fractional equivalent (in 10ths, 100ths, 
1,000ths, or whatever) in lowest terms?

Answer 7-6

Sometimes, but usually not. Consider 0.55, which converts to 55/100. This is not a fraction 
in lowest terms, because it can be reduced to 11/20. But 0.23 converts to 23/100. This is in 
lowest terms.

Question 7-7

How can we write down the fractions 1/2, 1/3, 1/4, ..., 1/10 as decimal expressions?
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Answer 7-7

A calculator can be used for this purpose, but it must be able to display a lot of digits! Other-
wise, old-fashioned long division is the best way to find these:

 1/2 = 0.5

 1/3 = 0.333333333333 ...

 1/4 = 0.25

 1/5 = 0.2

 1/6 = 0.166666666666 ...

 1/7 = 0.142857142857 ...

 1/8 = 0.125

 1/9 = 0.111111111111 ...

 1/10 = 0.1

Question 7-8

How can we write the endless repeating decimal 0.458745874587... as a fraction?

Answer 7-8

First, we must identify the sequence of digits that repeats. Here, it’s 4, 5, 8, and 7. There are 
four digits in the sequence, so we create a fraction with a denominator having four digits, all 9s. 
Then we make the repeating sequence into a four-digit numeral and use it as the numerator 
of the fraction. That gives us

0.458745874587... = 4,587/9,999

Question 7-9

How can we make a decimal expression an order of magnitude larger or smaller?

Answer 7-9

To make it an order of magnitude larger, move the decimal point to the right by one place. To 
make it an order of magnitude smaller, move the decimal point to the left by one place. Here’s 
an example. Start with

35,468.0337

To make this number an order of magnitude (or factor of 10) larger, we must multiply by 10. 
That’s done by moving the decimal point to the right by one place and then repositioning the 
comma, getting

354,680.337
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To make the original number an order of magnitude smaller, we divide by 10. That can be 
done by moving the decimal point to the left by one place and then repositioning the comma. 
We end up with

3,546.80337

Question 7-10

A negative integer power is a nonzero quantity divided by itself a certain number of times. 
How can we show the meaning of this by examples in the decimal system?

Answer 7-10

Let’s start with the number 10. This is 101. When we divide 10 by itself, we get 100, which is 1. 
When we divide 10 by itself twice, we get 10−1, which is 0.1. It goes on like this for negative 
integer powers:

10 divided by itself three times is 10−2, which is 1/102 or 0.01

10 divided by itself four times is 10−3, which is 1/103 or 0.001

10 divided by itself five times is 10−4, which is 1/104 or 0.0001

↓

and so on, as far as we want!

Chapter 8

Question 8-1

Suppose we start with 7 and raise it to the −1st power, then the −2nd power, then the 
−3rd power, then the −4th power, then the −5th power, and so on, endlessly. What happens 
to the result?

Answer 8-1

We get a sequence of fractions that converges toward 0. It starts at 1/7, and then keeps getting 
1/7 as large with each succeeding power. Here’s what happens:

7−1 = 1/7

7−2 = 1/72 = 1/49

7−3 = 1/73 = 1/343

7−4 = 1/74 = 1/2,401

7−5 = 1/75 = 1/16,807
↓

and so on, forever
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Question 8-2

When we see a complicated expression raised to negative integer power, what must we watch 
out for?

Answer 8-2

We must be sure that the expression is not equal to 0, and can never attain a value of 0. 
Otherwise, we’ll end up dividing by 0. That’s forbidden!

Question 8-3

Suppose that we encounter these expressions. What restrictions must we place on x and y in 
each case?

(a) (x − 5)−3 (b) (x + y)−2

(c) (3xy)−2 (d) (x − y)−5

Answer 8-3

We must be sure the expressions inside the parentheses can never equal 0. Here’s what we must 
do to stay safe:

(a) We can’t let x be equal to 5.
(b) We can’t let x be equal to −y.
(c) We can’t let either x or y be equal to 0.
(d) We can’t let x be equal to y.

Question 8-4

What is meant by the square root of a number? The cube root? The 4th root? The nth root, 
where n is a positive integer?

Answer 8-4

The square root of a number is a quantity that gives us the original number when squared 
(multiplied by itself or raised to the 2nd power). The cube root is a quantity that gives us the 
original number when cubed (raised to the 3rd power). The 4th root is a quantity that gives 
us the original number when raised to the 4th power. The nth root is a quantity that gives us 
the original number when raised to the nth power.

Question 8-5

Even-numbered roots can be ambiguous. For example, if we want to find the square root of 
16, both 4 and −4 will work, because

42 = 4 × 4 = 16

and

(−4)2 = (−4) × (−4) = 16

How can we prevent this sort of confusion?
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Answer 8-5

For any positive integer n, we call the nth root of a number the (1/n)th power of that number. 
Then we insist that if n is even, the (1/n)th power is positive by default. We can specify that 
we want to use the negative value instead of the positive one (or along with it, as we’ll do later 
in this book when we solve quadratic equations), but we must be clear about it.

Question 8-6

What happens when we take a positive odd-integer root of a negative number? A positive 
even-integer root of a negative number?

Answer 8-6

A positive odd-integer root of a negative number is another negative number. A positive even-
integer root of a negative number is an imaginary number. We haven’t worked with imaginary 
numbers yet.

Question 8-7

Suppose we have a nonzero number x, and two integers p and q. We want to multiply x p by x q.
How can we express x px q as a single power of x ?

Answer 8-7

We add the exponents p and q. Then we raise x to that power, getting

x px q = x (p + q)

Question 8-8

Suppose we have a nonzero number x, and two integers p and q. We want to divide x p by x q.
How can we express x p/x q as a single power of x ?

Answer 8-8

We find the difference ( p − q). Then we raise x to that power, getting

x p/x q = x (p − q)

Question 8-9

Suppose we have a nonzero number x, and two integers p and q. We want to raise the quantity 
x p to the qth power. How can we express (x p)q as a single power of x ?

Answer 8-9

We multiply p by q. Then we raise x to that power, getting

(x p)q = x pq
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Question 8-10

Suppose we have a nonzero number x, an integer p, and a nonzero integer q. We want to take 
the q th root of the quantity x p. How can we express this as a single power of x ?

Answer 8-10

Let’s remember that the q th root of any quantity is the same as the (1/q)th power. This lets us 
apply the rule from Answer 8-9, like this:

 (x p)1/q = x p(1/q)

 = x p /q

We divide p by q and then raise x to that power. It’s important that q never be 0! If it is, we’ll 
get an exponent of p /0, and the entire expression will become meaningless.

Chapter 9

Question 9-1

No matter how close together two rational numbers happen to be, we can always find another 
rational number between them. How?

Answer 9-1

We can take the average of the original two numbers. If those two numbers are p and q, then 
the rational number ( p + q)/2 is always greater than p but less than q.

Question 9-2

Imagine that we take a continuous, infinitely long geometric line and make it into a number 
line. Every rational number will then correspond to a unique point on this line. Does that 
mean every point on the line will represent a rational number?

Answer 9-2

No! Even though every rational number can be represented on the line, there are “extra” points 
on the line that don’t correspond to any rational number.

Question 9-3

How many points on a true geometric number line do not correspond to any rational number? 
Give two examples.

Answer 9-3

There are infinitely many such points. A good example is the point corresponding to the 
positive square root of 2. We saw how that point can be located in the text of Chap. 9. 
Another example is π, the ratio of a circle’s circumference to its diameter. We can locate 
this point by taking a circle with a diameter of exactly 1 unit, and then “rolling” it for one 
complete revolution, without slipping or sliding, upward along the number line as shown 
in Fig. 10-4.
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Question 9-4

In this book, here’s how we symbolize various sets of numbers.

• The set of natural numbers is N.
• The set of integers is Z.
• The set of rational numbers is Q.
• The set of irrational numbers is S.
• The set of real numbers is R.

Which of these sets are proper subsets of which? Which pairs of sets are disjoint?

Answer 9-4

Here’s how the sets are related:

• N ⊂ Z, N ⊂ Q, and N ⊂ R
• Z ⊂ Q and Z ⊂ R
• Q ⊂ R
• S ⊂ R
• N ∩ S = ∅, Z ∩ S = ∅, and Q ∩ S = ∅
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Question 9-5

One of the following statements is false. Which one?

• Some real numbers are rational.
• Some real numbers are irrational.
• All integers are rational.
• Some integers are irrational.
• All irrationals are real.
• All integers are real.

Answer 9-5

The fourth statement is false. No integer is irrational. Every integer is rational because it can 
be expressed as a ratio of integers. (Any integer is equal to itself divided by the integer 1!)

Question 9-6

Which of the sets N, Z, Q, S, and R are denumerable? Which are not?

Answer 9-6

The sets N, Z, and Q are denumerable. That means the elements of each of these sets can be 
arranged in an “implied list,” even though the “list” can’t be written out in full because it’s 
infinitely long. The sets S and R are not denumerable. Their elements can’t be arranged in any 
sort of “implied list.” Even an infinitely long “list” can’t capture them all!

Question 9-7

What does it mean for an operation to be closed over the set of real numbers?

Answer 9-7

Imagine that we have an operation between two quantities. Let’s call that operation “pound” 
and use the symbol #. The “pound” operation is closed over the set of real numbers if and only 
if, for any two real numbers x and y, the quantity x # y is also a real number.

Question 9-8

Which of the common arithmetic operations are closed over the set of reals? Which are not?

Answer 9-8

Addition, multiplication, and subtraction are closed over the set of real numbers. Division is 
not, because if we divide a real number by 0, we get an undefined quantity. Exponentiation 
(the raising of a real number to a real-number power) is not, because 00 is undefined.

Question 9-9

What about taking a real root of a real number? Is this operation closed over the set of reals?

Answer 9-9

No. Any even-integer root of a negative real number produces an imaginary number, and no 
imaginary number is real. The 0th root of any real number is undefined, because that’s the 
equivalent of taking the number to the power of 1/0.
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Question 9-10

What is meant by the cardinality of a set? What is the cardinality of the set N ? The set Z ? The 
set Q ? The set R ?

Answer 9-10

The cardinality of a set is the number of elements it contains. The sets N, Z, and Q have 
cardinality of ℵ0 (aleph-null). The set R has cardinality larger than ℵ0.
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CHAPTER

11

Equations and Inequalities

You’ve learned how numbers and variables can be combined to form equations. Now it’s time 
to get more adept with simple equations. You’ll also learn the basic principles of inequalities.

Equation Morphing Revisited
In Chap. 5, we mentioned some rules for manipulating equations. Let’s examine these rules in 
more detail. Keep in mind that in any equation, there are two or more parts separated by one 
or more equality symbols, also called equals signs. The most basic form of equation has a left 
side and a right side, with a single equality symbol between them.

Changing the order

An equation can be stated in any order. If there are only two expressions with an equals sign 
between them, we can reverse the right and left sides. If we see a = b, we can change it to b = a.
If there are more than two expressions, we can rearrange them however we want. 

Adding or subtracting a quantity

All the parts of an equation have the same value, so we can add the same quantity to each part 
and have those parts remain equal. Here’s a simple example with numbers:

5/2 = 20/8

Both sides of this equation are equal to 2-1/2. If we add 7 to each side, we get

5/2 + 7 = 20/8 + 7

Simplifying each side of this gives us 9-1/2 = 9-1/2.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Now suppose we have some variable or quantity. We don’t know its numerical value, but we 
can find it if we want. Let’s call that quantity x. We can add x to both sides of any equation 
we might come across. For example,

5/2 + x = 20/8 + x

We can subtract the same quantity from both sides, or from all parts, of an equation and get 
another valid equation. Here’s an example:

5/2 = 10/4 = 20/8

If we subtract 1/2 from each part of this, we get

5/2 − 1/2 = 10/4 − 1/2 = 20/8 − 1/2

Simplifying this gives us the three-way equation 2 = 2 = 2.

Adding or subtracting equations

Just as we can add a quantity to, or subtract it from, all parts of an equation and get another 
valid equation, we can add or subtract entire equations to or from each other. Here’s an 
example with numbers. Suppose we see these two equations:

5/2 = 20/8

and

3/2 = 12/8

If we add these two equations to each other by adding their left and right sides individually, 
we get

5/2 + 3/2 = 20/8 + 12/8

which simplifies to 8/2 = 32/8, and further to 4 = 4. We can subtract the second equation 
from the first, and get

5/2 − 3/2 = 20/8 − 12/8

which simplifies to 2/2 = 8/8, and further to 1 = 1.

Multiplying through by a quantity

We can multiply each side, or all parts, of an equation by the same quantity and get another valid 
equation. This is called multiplying through. Let’s look at our original numeric example first:

5/2 = 20/8



If we multiply through by 8, we get

(5/2) × 8 = (20/8) × 8

which simplifies to 40/2 = 160/8, and further to 20 = 20.

Dividing through by a quantity

We can divide any equation through by a nonzero number, and we’ll always get another 
valid equation. Dividing by any nonzero number is the same thing as multiplying by its 
reciprocal.

As we’ve already learned, when we divide an equation through by some complicated 
expression that contains one or more variables, we must be careful! If that expression can 
become equal to 0, we’re in trouble. The danger is worsened by the fact that it can be difficult 
to tell when such trouble is taking place—until it’s too late.

As an example of what can happen when we get careless about this, suppose we come 
across this equation and are told to find the value of x :

x 2 + x + 3 = 3

We might start by subtracting 3 from each side. That is perfectly legitimate. We then get

x 2 + x = 0

Remembering that any quantity squared is equal to that quantity multiplied by itself, we 
divide the equation through by x, getting

x 2/x + x /x = 0 /x

Because x /x = 1 and 0 /x = 0 no matter what x might happen to be (or so we think in the 
excitement of the moment), we can simplify this to

x = 0

Confident that we have solved the equation, we “plug in” 0 for x in the original and check 
it out:

02 + 0 + 3 = 3

This simplifies to 3 = 3. “The problem has been solved,” we say.
Not so fast! We’ve missed the other solution, which is x = −1. Check it out. Try “plugging 

in” −1 for x in the original equation, and see what happens. This oversight occurred because 
we made the mistake of dividing through by x when one of the two solutions to the original 
equation is x = 0. This blinded us to the existence of the other solution.
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Are you confused?
To avoid mistakes like the one just described, we must never divide an equation through by any variable 
or expression that might happen to equal 0. The safest approach is to divide through only by nonzero 
numbers, and never by variables or expressions containing variables.

Here’s a challenge!
Show that we cannot, in general, square both sides of an equation and end up with another equation that 
has the same solution.

Solution
To see what can go wrong when we square both sides of an equation, consider this:

x = −4

This is as simple as an equation can be. It states its own solution, which is −4. If we square both sides, we get

x 2 = 16

This new equation has two solutions, x = −4 and x = 4. It’s clearly not equivalent to the original equation. 
We’ve gotten ourselves into trouble, just as we did when we inadvertently divided by 0. But this time, 
instead of missing a legitimate solution, we’ve generated a false one!

Inequalities
Most of the time in algebra, you’ll work with equations. These are statements that involve 
quantities that are the same, or are supposed to be the same. But sometimes you’ll need to 
express the fact that quantities differ, or at least the fact that they don’t have to be the same. 
Such statements are called inequalities.

Not equal

When you want to indicate that two quantities are never equal, but you don’t want to specify 
relative size or the extent to which they’re different, you can use the “not equal to” symbol. 
You’ve already seen this in action. It’s an equals sign with a slash through it (≠). Here are some 
examples of its use:

• To state that 3 is not equal to 7/2, write 3 ≠ 7/2.
• To state or require that x is never equal to 0, write x ≠ 0.
• To state or require that x is never equal to y, write x ≠ y.
• To state or require that 2x is never equal to x, write 2x ≠ x.

Strictly larger

When a certain quantity is always larger than (or greater than) some other quantity, the “strictly 
larger than” symbol is used. It looks like a letter V rotated a quarter-turn counterclockwise, 



or an arrowhead pointing to the right (>). When you use this symbol, remember that “larger” 
means “more positive” or “less negative.”

• To state that 3 is strictly larger than −7/2, write 3 > −7/2.
• To state or require that x is strictly larger than 0, write x > 0.
• To state or require that x is strictly larger than y, write x > y.
• To state or require that 2x is strictly larger than x, write 2x > x.

Strictly smaller

When a certain quantity is always smaller than (or less than) some other quantity, the “strictly 
smaller than” symbol is used. It looks like a letter V rotated a quarter-turn clockwise, or an 
arrowhead pointing to the left (<). When you use this symbol, remember that “smaller” means 
“less positive” or “more negative.”

• To state that −1 is strictly smaller than 7/2, write −1 < 7/2.
• To state or require that x is strictly smaller than 0, write x < 0.
• To state or require that x is strictly smaller than y, write x < y.
• To state or require that 2x is strictly smaller than x, write 2x < x.

Larger than or equal

When a certain quantity is always larger than or equal to some other quantity, the “larger than 
or equal” symbol is used. It looks like a Roman numeral IV rotated a quarter-turn counter-
clockwise, or an arrowhead pointing to the right with a line underneath (≥).

• To state that 3 is larger than or equal to −7/2, write 3 ≥ −7/2.
• To state or require that x is larger than or equal to 0, write x ≥ 0.
• To state or require that x is larger than or equal to y, write x ≥ y.
• To state or require that 2x is larger than or equal to x, write 2x ≥ x.

Smaller than or equal

When a certain quantity is always smaller than or equal to some other quantity, the “smaller 
than or equal” symbol is used. It looks like a Roman numeral VI rotated a quarter-turn clock-
wise, or an arrowhead pointing to the left with a line underneath (≤).

• To state that −1 is smaller than or equal to 7/2, write −1 ≤ −7/2.
• To state or require that x is smaller than or equal to 0, write x ≤ 0.
• To state or require that x is smaller than or equal to y, write x ≤ y.
• To state or require that 2x is smaller than or equal to x, write 2x ≤ x.

Are you confused?
How can a quantity 2x can be strictly smaller than x, or smaller than or equal to x, as is mentioned twice 
in the above examples? Think for a moment about the meaning of “smaller” with respect to positive and 
negative numbers. Then remember what happens when you multiply a negative number by a positive 
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number such as 2. Once you remember this, it’s easy to see that if x is any negative number, then 2x is 
smaller than x. Now you can write

If x < 0, then 2x < x

and

If x ≤ 0, then 2x ≤ x

Check these facts out with some actual numbers and you’ll see how they work. When any number is nega-
tive to begin with, doubling it makes it more negative, and therefore smaller.

Logical implication

Here is a new mathematical symbol. An “if/then” statement, such as those above, can be 
abbreviated using a double-shafted arrow pointing to the right, often with a little extra space 
on either side (⇒), between the “if ” part of the statement and the “then” part. This arrow 
stands for the term logically implies, which in plain English translates to “means it is always 
true that.” (It does not mean “causes”!) With the help of this symbol, the above facts can be 
shortened to

(x < 0) ⇒ (2x < x)

and

(x ≤ 0) ⇒ (2x ≤ x)

Try reading these statements by saying “logically implies” or “means it is always true that” 
when you see the arrow.

In any logical implication of this kind, the part of the statement to the left of the arrow 
is called the antecedent. The part of the statement to the right of the arrow is called the 
consequent.

Here’s a challenge!
Write a pair of “if/then” statements that precisely define all the real numbers that, when divided by 10, 
become smaller than the original number.

Solution
Let’s begin by seeking out all the real numbers that become strictly smaller when we divide them by 10. 
It’s not difficult to see that any positive real will work. We can say that

(x > 0) ⇒ (x /10 < x)

If we start with a negative real and then divide it by 10, the result gets less negative, meaning that it 
becomes larger. All the negative reals therefore fail to “qualify.” We want the number to get smaller, not 



larger! What about 0? If we divide 0 by 10, we end up with 0 again, so 0 does not “qualify” either. We want 
the number to get strictly smaller! Now, addition to the above statement, we can claim its reverse:

 (x /10 < x) ⇒ (x > 0)

This means that if we divide a real number by 10 and get a strictly smaller number, the original number 
must be positive.

Logical equivalence

When a logical implication works in both directions, we have logical equivalence. This 
means that the left-hand part of the statement is true if and only if the right-hand part is 
true. The antecedent can also be the consequent, and vice-versa. To symbolize logical equiva-
lence, we use a double-shafted, double-headed arrow, often with extra space on either side (⇔).
We can also write the cryptic word “iff.” Now we can answer the challenge above with a single 
statement. We can write either

(x /10 < x) ⇔ (x > 0)

or

(x /10 < x) iff (x > 0)

How Inequalities Behave
Imagine three variables, a, b, and c. Now suppose that we think of some way to compare 
their values. Such a “comparison tool” is called a relation. In algebra, the variables represent 
numbers. But in general mathematics, they often represent other things, such as sets or logical 
statements.

Three properties of relations

Suppose we symbolize a newly dreamed-up relation by a pound sign (#, read as “pound”). 
Let’s define three properties that may (or may not) apply to this relation. Our relation is reflex-
ive if and only if, for all possible values of a,

a # a

Our relation is symmetric if and only if, for all possible values of a and b,

(a # b) ⇒ (b # a)

Our relation is transitive if and only if, for all possible values of a, b, and c,

[(a # b) & (b # c)] ⇒ (a # c)
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We can use parentheses, braces, and brackets in logical statements, just as we use them in ordi-
nary mathematical expressions and equations. The ampersand (&) stands for “and.”

If we have a relation # that is reflexive, symmetric, and transitive, then # is called an 
equivalence relation. The converse of this is also true: If # is an equivalence relation, then # is 
reflexive, symmetric, and transitive.

Behavior of the = relation

You may be thinking, “I’ve seen some of these properties before!” In the solution to Prob. 8 
in Chap. 6, we saw that the equality relation (=) is reflexive, symmetric, and transitive, so 
it is an equivalence relation. In contrast, the various forms of inequality are not equivalence 
relations.

Behavior of the ≠ relation

“Not equal” fails the test when it comes to the reflexive property. This is trivial; if “not equal” 
were reflexive, all variables would be different from themselves! The symmetric property, how-
ever, does work for the “not equal” relation. If a is not equal to b, then b is not equal to a.
Logically, we can write this as

(a ≠ b) ⇒ (b ≠ a)

“Not equal” can’t pass the transitive property test. Suppose we let a be equal to 1, b be equal 
to 2, and c be equal to 1. Then we have 1 ≠ 2 and 2 ≠ 1, but it is not true that 1 ≠ 1!

Behavior of the > relation

The “strictly larger” relation is neither reflexive nor symmetric. There is no number a such 
that a > a. If a > b, we can never say that b >a, no matter what a and b are. Therefore, “strictly 
larger” is not an equivalence relation.

The transitive property does work here. For all numbers a, b, and c, if a > b and b > c,
then a > c. This principle is illustrated in Fig. 11-1.

Mathematicians symbolize the words “for all” by an upside-down capital letter A (∀), and 
give it the fancy name universal quantifier. We can now write

(∀ a, b, c) : [(a > b) & (b > c)] ⇒ (a > c)

The colon separates the quantifier from the main substance of the statement. We can read the 
above string of symbols out loud as, “For all a, b, and c: If a is strictly larger than b, and b is 
strictly larger than c, then a is strictly larger than c.”

a b c> >

>Figure 11-1 The “strictly larger” 
relation is transitive. 
If a > b and b > c,
then a > c.



Behavior of the < relation

The “strictly smaller” relation fails the reflexive and symmetric tests, just as does the “strictly 
larger” relation. In fact, we can restate the case here by turning all the inequality symbols 
around. There is no number a such that a < a. If a < b, we can never say that b < a, regardless 
of the values of a and b. The “strictly smaller” relation is not an equivalence relation.

The “strictly smaller” relation is transitive. For all numbers a, b, and c, if a < b and b < c,
then a < c. This principle is illustrated in Fig. 11-2. We can write

(∀ a, b, c) : [(a < b) & (b < c)] ⇒ (a < c)

Behavior of the ê relation

The “larger than or equal” relation is not symmetric. If a ≥ b, then b ≥ a if a and b happen 
to be the same, but it never works if a is larger than b. Therefore, the “larger than or equal” 
relation is not an equivalence relation.

The reflexive and transitive properties hold true for the “larger than or equal” relation. 
A number a is always larger than or equal to itself, simply because it equals itself, and that’s 
good enough! For all numbers a, b, and c, if a ≥ b and b ≥ c, then a ≥ c. We can write these 
two facts in formal terms as

(∀ a) : a ≥ a

and

(∀ a, b, c) : [(a ≥ b) & (b ≥ c)] ⇒ (a ≥ c)

Behavior of the Ä relation

The case for the “smaller than or equal” relation is similar to the case for the “larger than or 
equal” relation. If a ≤ b, then b ≤ a if a = b, but never if a < b. Because of this, the “strictly 
smaller” relation cannot qualify as an equivalence relation. The reflexive and transitive proper-
ties, however, do hold true here. We can logically state these fact as

(∀ a) : a ≤ a

and

(∀ a, b, c) : [(a ≤ b) & (b ≤ c)] ⇒ (a ≤ c)

b >>a c

>Figure 11-2 The “strictly smaller” 
relation is transitive. 
If a < b and b < c,
then a < c.
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Are you confused?
Once you know what all these symbols mean, you can read complicated logical statements out loud or 
write them down in words. You can even break them up and turn them into “mathematical verse.” For 
example, the last logical sentence in the previous paragraph can be written like this.

For all a, b, and c:

If

a is smaller than or equal to b,

and

b is smaller than or equal to c,

then

a is smaller than or equal to c.

Here’s a challenge!
Is logical implication an equivalence relation?

Solution
No. To see why, let’s make up three statements and give them logical names:

• I’m thinking of a natural number = Tn.
• I’m thinking of a rational number = Tq.
• I’m thinking of a real number = Tr.

Now let’s check out the symmetric property. From our knowledge of how the sets of naturals, rationals, 
and reals (N, Q, and R) are related, we know that

Tn ⇒ Tq

and

Tq ⇒ Tr

These statements translate to the following mathematical verses.

If

I’m thinking of a natural number,

then

I’m thinking of a rational number.

If

I’m thinking of a rational number,

then

I’m thinking of a real number.



We can’t reverse either of these implications and still end up with a valid statement. If I’m thinking of a 
rational number, I’m not necessarily thinking of a natural number. (Suppose it’s 1/2.) If I’m thinking of a 
real number, I’m not necessarily thinking of a rational number. (Suppose it’s the positive square root of 2.) 
Logical implication is not an equivalence relation, because it’s not symmetric.

Inequality Morphing
Some of the familiar equation-morphing rules also work for inequalities, but others must be 
modified, and a few don’t work at all. Here are the things we can do with two-part equations, 
summarized for reference.

• Reverse the order.
• Add the same quantity to both sides.
• Subtract the same quantity from both sides.
• Add one equation to another.
• Multiply both sides by the same quantity.
• Divide both sides by the same nonzero quantity.

Whenever we do one or more of these things to an equation, we get another valid equation. 
Now let’s see how well these rules work for inequalities. (We won’t get into formal proofs of 
these facts.) You can try out some examples if you want to improve your understanding of 
how they work.

Manipulating ñ statements

If two quantities a and b are different, we can express that fact in either order. In general, it is 
always true that if a ≠ b, then b ≠ a.

We can add or subtract the same quantity from each side of a “not equal” statement. If 
two quantities are different to start out with, then they’ll still be different if we add or subtract 
the same quantity from both. If a ≠ b, then for any number c

a + c ≠ b + c

and

a − c ≠ b − c

We cannot, in general, add two “not equal” statements and get another “not equal” statement. 
Consider 3 ≠ 4 and 8 ≠ 7. These are both true statements, but when we add them (left-to-left 
and right-to-right), we get 3 + 8 ≠ 4 + 7. But they are equal!

We can multiply both sides of a “not equal” statement by the same nonzero quantity and 
get another true statement. If the quantity is 0, then we end up with 0 ≠ 0, which is false.

We can divide both sides of a “not equal” statement by the same nonzero quantity and 
get another true statement. If the quantity by which we divide through is 0, we get undefined 
results on both sides of the inequality symbol.
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Here’s a summary of how we can morph “not equal” statements.

• Can we reverse the order? Yes.
• Can we add the same quantity to both sides? Yes.
• Can we subtract the same quantity from both sides? Yes.
• Can we add one statement to another? Not in general.
• Can we multiply both sides by the same quantity? Only if that quantity is not 0.
• Can we divide both sides by the same nonzero quantity? Yes.

Manipulating > statements

If some quantity a is strictly larger than another quantity b, we cannot reverse the order and 
still have a valid statement. It is never true that if a > b, then b > a. However, we can reverse 
the order if we also reverse the sense of the inequality. If a > b, then it is always true that 
b < a.

We can add or subtract the same quantity from each side of a “strictly larger than” state-
ment. If a > b, then for any number c

a + c > b + c

and

a − c > b − c

We can always add two “strictly larger than” statements (left-to-left and right-to-right) and 
get another “strictly larger than” statement. For any numbers a, b, c, and d, if we have a > b
and c > d, then

a + c > b + d

We can multiply both sides of a “strictly larger than” statement by the same positive quantity 
and get another valid statement. If a > b, then for any positive number p

ap > bp

If the quantity by which we multiply through is 0, then we end up with 0 > 0, which is false. If 
the quantity by which we multiply the statement through happens to be negative, the sense of 
the inequality is reversed. The “strictly larger than” relation turns into a “strictly smaller than” 
relation. If a > b, then for any negative number n

an < bn

We can divide both sides of a “strictly larger than” statement by the same positive quantity and 
get another valid statement. If a > b, then for any positive number p

a /p > b /p



If the quantity by which we divide through is 0, we get undefined results on both sides of the 
inequality symbol. If the quantity by which we divide through is negative, the sense of the 
inequality is reversed, just as with multiplication by a negative. If a > b, then for any negative 
number n

a /n < b /n

Here’s a summary of how we can morph “strictly larger than” statements.

• Can we reverse the order? Never, unless we change the inequality to “strictly smaller 
than.”

• Can we add the same quantity to both sides? Yes.
• Can we subtract the same quantity from both sides? Yes.
• Can we add one statement to another? Yes.
• Can we multiply both sides by the same quantity? Only if that quantity is positive.
• Can we divide both sides by the same quantity? Only if that quantity is positive.

Manipulating < statements

If some quantity a is strictly smaller than another quantity b, we cannot reverse the order and 
still have a valid statement. It is never true that if a < b, then b < a. But we can reverse the 
order if we also reverse the sense of the inequality. If a < b, then it is always true that b > a.

We can add or subtract the same quantity from each side of a “strictly smaller than” state-
ment. If a < b, then for any number c

a + c < b + c

and

a − c < b − c

We can add two “strictly smaller than” statements (left-to-left and right-to-right) and get 
another “strictly smaller than” statement. For any numbers a, b, c, and d, if a < b and c < d,
then

a + c < b + d

We can multiply both sides of a “strictly smaller than” statement by the same positive quantity 
and get another valid statement. If a < b, then for any positive number p

ap < bp

If the quantity by which we multiply through is 0, then we end up with 0 < 0, which is false. If 
the quantity by which we multiply the statement through is negative, the sense of the inequal-
ity is reversed. If a < b, then for any negative number n,

an > bn
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We can divide both sides of a “strictly smaller than” statement by the same positive quantity 
and get another valid statement. If a < b, then for any positive number p

a /p < b /p

If the quantity by which we divide through is 0, we get undefined results on both sides of the 
inequality symbol. If the quantity by which we divide through is negative, the sense of the 
inequality is reversed. If a < b, then for any negative number n

a /n > b /n

Here’s a summary of how we can morph “strictly smaller than” statements.

• Can we reverse the order? Never, unless we change the inequality to “strictly larger than.”
• Can we add the same quantity to both sides? Yes.
• Can we subtract the same quantity from both sides? Yes.
• Can we add one statement to another? Yes.
• Can we multiply both sides by the same quantity? Only if that quantity is positive.
• Can we divide both sides by the same quantity? Only if that quantity is positive.

Manipulating ê statements

If some quantity a is larger than or equal to another quantity b, we cannot reverse the order, 
except in the situation where a happens to equal b. For that reason, it’s not generally true that 
if a ≥ b, then b ≥ a. But we can reverse the order if we also reverse the sense of the inequality. 
If a ≥ b, then it is always true that b ≤ a.

We can add or subtract the same quantity from each side of a “larger than or equal” state-
ment. If a ≥ b, then for any number c

a + c ≥ b + c

and

a − c ≥ b − c

We can always add two “larger than or equal” statements (left-to-left and right-to-right) and 
get another valid statement. For any numbers a, b, c, and d, if a ≥ b and c ≥ d, then

a + c ≥ b + d

We can multiply both sides of a “larger than or equal” statement by the same nonnegative 
quantity and get another valid statement. If a ≥ b, then for any nonnegative number q

aq ≥ bq

If q = 0, we end up with 0 ≥ 0, which is true. If the quantity by which we multiply the 
statement is negative, the sense of the inequality is reversed. If a ≥ b, then for any negative 
number n

an ≤ bn



We can divide both sides of a “larger than or equal” statement by the same positive quantity 
and get another valid statement. If a ≥ b, then for any positive number p

a /p ≥ b /p

If the quantity by which we divide through is 0, we get undefined results on both sides of the 
inequality symbol. If the quantity by which we divide through is negative, the sense of the 
inequality is reversed. If a ≥ b, then for any negative number n

a /n ≤ b /n

Here’s a summary of how we can morph “larger than or equal” statements.

• Can we reverse the order? Not in general, unless we change the inequality to “smaller 
than or equal.”

• Can we add the same quantity to both sides? Yes.
• Can we subtract the same quantity from both sides? Yes.
• Can we add one statement to another? Yes.
• Can we multiply both sides by the same quantity? Only if that quantity is nonnegative.
• Can we divide both sides by the same quantity? Only if that quantity is positive.

Manipulating Ä statements

If some quantity a is smaller than or equal to another quantity b, we cannot reverse the order, 
except when a happens to equal b. It’s not generally true that if a ≤ b, then b ≤ a. But we can 
reverse the order if we also reverse the sense of the inequality. If a ≤ b, then it is always true 
that b ≥ a.

We can add or subtract the same quantity from each side of a “smaller than or equal” 
statement. If a ≤ b, then for any number c

a + c ≤ b + c

and

a − c ≤ b − c

We can always add two “smaller than or equal” statements (left-to-left and right-to-right) and 
get another valid statement. For any numbers a, b, c, and d, if a ≤ b and c ≤ d, then

a + c ≤ b + d

We can multiply both sides of a “smaller than or equal” statement by the same nonnegative 
quantity and get another valid statement. If a ≤ b, then for any nonnegative number q

aq ≤ bq
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If q = 0, then we end up with 0 ≤ 0, which is true. If the quantity by which we multiply the 
statement is negative, the sense of the inequality is reversed. If a ≤ b, then for any negative 
number n

an ≥ bn

We can divide both sides of a “smaller than or equal” statement by the same positive quantity 
and get another valid statement. If a ≤ b, then for any positive number p

a /p ≤ b /p

If the quantity by which we divide through is 0, we get undefined results on both sides of the 
inequality symbol. If the quantity by which we divide through is negative, the sense of the 
inequality is reversed. If a ≤ b, then for any negative number n

a /n ≥ b /n

Here’s a summary of how we can morph “smaller than or equal” statements.

• Can we reverse the order? Not in general, unless we change the inequality to “larger 
than or equal.”

• Can we add the same quantity to both sides? Yes.
• Can we subtract the same quantity from both sides? Yes.
• Can we add one statement to another? Yes.
• Can we multiply both sides by the same quantity? Only if that quantity is nonnegative.
• Can we divide both sides by the same quantity? Only if that quantity is positive.

Are you confused?
Some people find it hard to see why multiplying an inequality through by a negative number reverses its 
sense. Here’s an example:

3 < 7

If you multiply this through by −1 without changing the sense of the inequality, you get

3 × (−1) < 7 × (−1)

which simplifies to

−3 < −7

This new statement is false! It becomes true if, but only if, you switch the inequality symbol from “strictly 
smaller than” to “strictly greater than” getting

−3 > −7



You must be careful if you multiply or divide an inequality through by a variable, or by any expression 
containing a variable. Suppose you multiply the original inequality in this section through by x. Then 
you get

3x < 7x

This changes the situation completely! You no longer have a plain statement of fact. Now you have some-
thing that contains an unknown. Keep in mind that x might be positive or negative, or even equal to 0. If 
x happens to be negative, the sense of the inequality must be reversed if the statement is to remain true. If 
x happens to be 0, the statement becomes false no matter what. It’s best to stick with plain numbers, also 
called constants, whenever you multiply or divide an inequality through.

Are you still confused?
A whimsical way to state the above warning is to invoke a time-worn proverb known as Murphy’s law: “If 
something can go wrong, it will.” Whenever you do anything to an equation or inequality, ask yourself, “Is 
this action completely safe? Can anything bad happen?” If you suspect possible trouble, don’t ignore that 
uneasy feeling. Check out the rules in this chapter to be sure you’re “obeying the law”! A single blunder 
can cause an error that may remain hidden for some time. But eventually, that error will come around 
and bite you.

Here’s a challenge!
Suppose we are given the following inequality, and we are told to derive a statement that clearly indicates 
all the real numbers x for which it is true:

x + 10 < 2x − 24

In other words, we must “solve the inequality.” How can we do it?

Solution
We can use the rules for inequality morphing to change this statement into something with x on one side 
and a numeral on the other. First, let’s add 24 to each side, getting

x + 10 + 24 < 2x − 24 + 24

This simplifies to

x + 34 < 2x

Now let’s subtract x from each side. That gives us

34 < 2x − x

which simplifies to

34 < x
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We can say this in a more intuitive way by turning it around and reversing the sense of the inequality, so 
we have

x > 34

This is the standard way to state the solution to any single-variable algebra problem. We put the variable 
all by itself on the left-hand side of the relation symbol, and a plain numeral all by itself on the right.

Here’s a final challenge!
In terms of an inequality statement and set notation, describe how the nonnegative integers relate to the 
negative real numbers.

Solution
Let’s call the set of nonnegative integers Z0+, and the set of negative reals R −. Any negative real number we 
choose will be smaller than any nonnegative integer we choose. Therefore, if x is an element of Z0+ and y is 
an element of R −, then x is larger than y. In logical form along with set notation, we can write this as

[(x ∈ Z0+) & (y ∈ R−)] ⇒ x > y

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1. Suppose we see this equation:

7/2 = 14/4 = 21/6

   How can we simplify this using the rules for equation morphing, so we get a statement 
that says a positive integer is equal to itself ?

 2.  How can we morph the equation in Prob. 1 so we get a statement to the effect that a 
negative integer is equal to itself ?

 3.  What happens if we multiply an equation through by the number 0? What happens if 
we multiply an equation through by a variable or expression that ultimately turns out to 
equal 0, although don’t know it at the time?

 4.  In terms of an inequality statement and set notation, describe how the negative integers 
relate to the natural numbers. Here’s a hint: Use the same approach as we did in the 
final challenge.

 5.  In terms of an inequality statement and set notation, describe how the nonpositive real 
numbers relate to the nonnegative real numbers. Here’s a hint: Use the same approach 
as we did in the final challenge.



 6.  In terms of an inequality statement and set notation, describe how the rational numbers 
relate to the irrational numbers. Here’s a hint: Use the same approach as we did in the 
final challenge.

 7.  Write the following statement as a “mathematical verse.” Does it represent a valid 
mathematical law? If not, show a counterexample.

(∀ a, b, c) : [(a ≥ b) & (b ≤ c)] ⇒  (a = c)

 8. For what real-number values of x is this equation true?

x + 4 = 2x

 9. For what real-number values of y is this inequality true?

y /2 ≠ 4y + 7

 10. For what real-number values of z is this inequality true?

z /(−3) ≤ 6z + 6
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CHAPTER

1 2

First-Degree Equations 
in One Variable

Algebra involves the manipulation of equations or inequalities to find the values of variables, 
also called unknowns. The simplest type of algebraic equation is called a first-degree equation 
in one variable. That means there’s only one unknown to solve for, and it’s never raised to any 
power (other than the first power).

Constants, Sums, and Differences
Let’s explore what happens when we form equations by adding and subtracting variables and 
constants on each side of an equality symbol.

Letter constants

A constant can, and often does, take the form of a plain number. Then it appears in an 
equation as a numeral. We might also see a constant symbolized by a letter such as a. The 
actual value of a so-called letter constant might not be revealed, but we can always be sure 
that it is fixed.

Letter constants can represent known irrational numbers when those numbers are 
impossible to write in terms of numerals alone. We’ve already seen an example in this book: 
π, the ratio of a circle’s circumference to its diameter. We can’t write out its exact value as a 
numeral. Another well-known constant is an irrational number whose first few digits are 
2.7182818 ..., and which is known as the exponential constant. This constant is symbolized 
as e. Letter constants abound in physics and engineering. For example, c stands for the 
speed of light in a vacuum, approximately 186,000 miles per second or 300,000 kilometers 
per second.

When we see a letter constant in an equation, we must be sure that we know exactly what 
it means. For example, e and c can represent general mathematical constants, having nothing 
to do with exponentials or the speed of light. Here’s an example:

ax + bx − cx − d = e
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In this equation, c does not stand for the speed of light, and e doesn’t mean the exponential 
constant. All five constants are meant to stand for ordinary numbers. Letters are used to avoid 
specifying exactly what numbers they are. We can, however, place restrictions on them, such 
as a > 1, b ≥ −5, d ≠ 0, or c < e.

Letter constants are convenient when we want to show an equation in a certain form. So, 
for example, we can write

a + x = b

to represent an equation in x, as long as we realize that a and b represent constants, and as 
long as we know that x is the variable. Once we know that the values of a and b always stay the 
same no matter what happens to x, we can morph the above equation to solve for x in terms 
of a and b. In this case, it’s easy; we can subtract a from each side to get

x = b − a

Letter constants usually come from the first half of the English alphabet, and are usually writ-
ten in lowercase. Greek letters can also represent constants.

Constants plus or minus x

Here are some first-degree equations that contain a variable x with constants added and/or 
subtracted.

 x − 4 = 0

 x + 7 = −2

 a − x = 0

 a − 5 + x = 0

 a − x = b

These equations can be morphed to get x all by itself on the left sides of the equality symbols, 
and nothing but constants on the right sides. We can use the rules from Chap. 9 to do this. 
The above equations then become:

 x = 4

 x = −9

 x = a

 x = 5 − a

 x = a − b

These are the solutions to the original equations, because they clearly state the values of x in 
terms of the constants.
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Are you confused?
If you aren’t sure how the five solutions come out of the five original equations above, Tables 12-1 through 
12-5 show the processes in each case, step-by-step in detail. The processes shown here don’t necessarily 
represent the only ways the equations can be solved. Nevertheless, the solution to any equation should 
always turn out the same, regardless of the sequence of steps. You might want to try solving some of these 
equations in two or three different ways.

Table 12-1. Process for solving the equation x − 4 = 0.

Statements Reasons

x − 4 = 0 This is the equation we are given
x − 4 + 4 = 0 + 4 Add 4 to each side
x = 4 Simplify each side

Table 12-2. Process for solving the equation x + 7 = −2.

Statements Reasons

x + 7 = −2 This is the equation we are given
x + 7 − 7 = −2 − 7 Subtract 7 from each side
x = −9 Simplify each side

Table 12-3. Process for solving the equation a − x = 0.

Statements Reasons

a − x = 0 This is the equation we are given
−x = −a Subtract a from each side
−1(−x) = −1(−a) Multiply each side by −1
x = a Simplify each side

Table 12-4. Process for solving the equation a − 5 + x = 0.

Statements Reasons

a − 5 + x = 0 This is the equation we are given
a − 5 + x − a = 0 − a Subtract a from each side
−5 + x = −a Simplify each side
−5 + x + 5 = −a + 5 Add 5 to each side
x = 5 − a Simplify each side



Here’s a challenge!
Manipulate the following equation so it contains x all by itself on the left side, and an expression containing 
the constants without x on the right side.

x − a + 5 = −x − b − 7 + c

Solution
This can be done in various ways. They’ll all produce the same result. To avoid making errors with the signs, 
let’s change all the subtractions to negative additions before we start rearranging things. That gives us

x + (−a) + 5 = −x + (−b) + (−7) + c

We can add a to each side, and then simplify the left side. This gets one of the constants out of the left 
side, so we have

x + 5 = −x + (−b) + (−7) + c + a

Next, let’s add −5 to each side, and again simplify the left side. This removes another constant from the 
left side, so we have

x = −x + (−b) + (−7) + c + a + (−5)

We can add x to each side, and then simplify both sides. That gets rid of the variable on the right side, 
leaving only constants there. Now we have

2x = −b + (−7) + c + a + (−5)

Let’s rearrange the right side to get the letter constants in alphabetical order, followed by the numerals. 
(That’s not technically necessary, but it will make things more elegant in the end.) That gives us

2x = a + (−b) + c + (−7) + (−5)

We can divide through by 2, and then add the two plain numbers in the numerator on the right-hand 
side, to get

x = [a + (−b) + c + (−12)]/2
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Table 12-5. Process for solving the equation a − x = b.

Statements Reasons

a − x = b This is the equation we are given
a − x + x = b + x Add x to each side
a = b + x Simplify the left side
b + x = a Transpose the left and right sides
b + x − b = a − b Subtract b from each side
x = a − b Simplify the left side
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The right-hand distributive law for division over addition, applied to the expression on the right side of 
the equation, gives us

x = a /2 + (−b)/2 + c /2 + (−12)/2

We can simplify the right-hand side by changing all the negative additions back to subtractions, and then 
dividing out the numeral quotient. This gives us

x = a /2 − b /2 + c /2 − 6

Products and Ratios
Let’s see what happens when the quantities on either side of an equation are multiplied by 
constants, divided by nonzero constants, or both.

Examples

Here are five first-degree equations that contain a variable x multiplied and/or divided by 
constants.

 4x = 0
 x / 7 = 2
 2x /a = b
 5abx = c
 3x /(4a) = 3

Using the rules from Chap. 9, we can manipulate these equations to get x alone on the left 
side, and the constants all by themselves on the right. That solves the equations. Here are the 
results.

 x = 0
 x = 14
 x = ab /2
 x = c /(5ab)
 x = 4a

Are you confused?
If you can’t see straightaway how these solutions are derived, Tables 12-6 through 12-10 show how 
the equations can be solved, step-by-step. Note that in the third and fifth original equations above 
(and in Tables 12-8 and 12-10), we must not let a equal 0. Also, in the fourth solution equation (and 
in Table 12-9), we must never allow either a or b to equal 0.
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Table 12-6. Process for solving the equation 4x = 0.

Statements Reasons

4x = 0 This is the equation we are given
4x /4 = 0/4 Divide each side through by 4
x = 0 Simplify each side

Table 12-7. Process for solving the equation x / 7 = 2.

Statements Reasons

x /7 = 2 This is the equation we are given
7x /7 = 7 × 2 Multiply each side by 7
x = 14 Simplify each side

Table 12-8. Process for solving the equation 2x /a = b, provided a ≠ 0.

Statements Reasons

2x /a = b This is the equation we are given
a(2x /a) = ab Multiply each side by a
2x = ab Simplify the left side
2x /2 = ab /2 Divide each side by 2
x = ab /2 Simplify the left side

Table 12-9. Process for solving the equation 5abx = c, provided a ≠ 0 
and b ≠ 0.

Statements Reasons

5abx = c This is the equation we are given
Require that We are about to divide through by
 a ≠ 0 and b ≠ 0  the product of these constants
Consider (5ab) to be a single constant This will allow us to solve the equation in
  a “streamlined” fashion
5abx /(5ab) = c /(5ab) Divide through by the constant (5ab)
x = c /(5ab) Simplify the left side

Table 12-10. Process for solving the equation 3x /(4a) = 3, provided a ≠ 0.

Statements Reasons

3x /(4a) = 3 This is the equation we are given
Consider (4a) to be a single constant  This will allow us to solve the equation

 in a “streamlined” fashion
[3x /(4a)](4a) = 3 × (4a) Multiply through by the constant (4a)
3x = 12a Simplify both sides
(3x)/3 = 12a /3 Divide each side by 3
x = 4a Simplify each side
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Here’s a challenge!
Manipulate the following equation so it contains x all by itself on the left side, and an expression containing 
the constants without x on the right side. Indicate, if applicable, which constants cannot equal 0.

3abx /(4cd ) = k 2

Solution
We must have c ≠ 0 and d ≠ 0 because, if either of them are allowed to equal 0, the left-hand side of the 
equation becomes undefined. Let’s multiply the equation through by the quantity (4cd). We get

[3abx /(4cd )](4cd ) = (4cd )k 2

which simplifies to

3abx = 4cdk 2

Now we can divide the entire equation through by the quantity (3ab). When we do this, we must insist 
that a ≠ 0 and b ≠ 0. That produces

3abx /(3ab) = 4cdk 2/(3ab)

which simplifies to

x = 4cdk 2/(3ab)

That does it! We don’t have to worry about the fact that one of the constants is squared. The square of 
a constant is always another constant. The variable, x, is never raised to any power (other than the first 
power), so the equation is a first-degree equation.

Combinations of Operations
In a first-degree equation that involves a single variable, constants can be added to or sub-
tracted from that variable, and the variable can also be multiplied or divided by nonzero 
constants.

Examples

Here are some first-degree equations that involve combinations of sums, differences, products, 
and ratios:

 8x − 4 = 0
 18x + 7 = −2
 a − 3x = 0
 a − 5 + 15x = 0



 a − 8x = b
 −6a + 3x = 12b
 6a − 3x /(bc) = −24d

These seven equations can all be rearranged with the morphing laws we already know, so that 
x appears alone on the left sides of the equality symbols, and nothing but constants appear on 
the right sides. Here are the respective solutions:

 x = 1/2
 x = −1/2
 x = a /3
 x = 1/3 − a /15
 x = a /8 − b /8
 x = 2a + 4b
 x = 2abc + 8bcd

Are you confused?
Tables 12-11 through 12-17 break down the solution processes for the above equations. Some of the 
steps are combined, making the derivations less tedious than those earlier in this chapter. Note that in 
the last original equation above (and in Table 12-17), it’s necessary that b ≠ 0 and c ≠ 0. Also note that 
an attempt has been made to put the solutions in elegant form by avoiding sums or differences in the 
numerators of fractions, putting fractions in lowest terms, and getting the letters for the constants in 
alphabetical order.
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Table 12-11. Streamlined process for solving 
the equation 8x − 4 = 0.

Statements Reasons

8x − 4 = 0 This is the equation we are given
8x = 4 Add 4 to each side
x = 4/8 Divide each side by 8
x = 1/2 Put the fraction into lowest terms

Table 12-12. Streamlined process for solving 
the equation 18x + 7 = −2.

Statements Reasons

18x + 7 = −2 This is the equation we are given
18x = −9 Subtract 7 from each side
x = −9/18 Divide each side by 18
x = −1/2 Put the fraction into lowest terms
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Table 12-13. Streamlined process for solving 
the equation a − 3x = 0.

Statements Reasons

a − 3x = 0 This is the equation we are given
−3x = −a Subtract a from each side
3x = a Multiply through by −1
x = a /3 Divide through by 3

Table 12-14. Streamlined process for solving 
the equation a − 5 + 15x = 0.

Statements Reasons

a − 5 + 15x = 0 This is the equation we are given
−5 + 15x = −a Subtract a from each side
15x = −a + 5 Add 5 to each side
15x = 5 − a  Commutative law for addition; change

 negative addition to subtraction
x = (5 − a)/15 Divide through by 15
x = 5/15 − a /15  Right-hand distributive law for division over

 subtraction
x = 1/3 − a /15 Reduce the numerical fraction to lowest terms

Table 12-15. Streamlined process for solving 
the equation a − 8x = b.

Statements Reasons

a − 8x = b This is the equation we are given
−8x = b − a Subtract a from each side
−x = (b − a)/8 Divide through by 8
x = −(b − a)/8 Multiply through by −1
x = (a − b)/8 Simplify the right side
x = a /8 − b/8  Right-hand distributive law for division over 

 subtraction

Table 12-16. Streamlined process for solving 
the equation −6a + 3x = 12b.

Statements Reasons

−6a + 3x = 12b This is the equation we are given
3x = 6a + 12b Add 6a to each side
x = (6a + 12b)/3 Divide through by 3
x = 2a + 4b Right-hand distributive law for division over 

 addition



Standard form

Whenever you encounter an equation that can be morphed into the following form, then that 
equation is a first-degree equation:

ax + b = 0

where x is the variable, and a and b are constants. This is called the standard form for a first-
degree equation in one variable. It’s possible that b can equal 0. If a = 0, then x disappears, the 
statement ends up trivial or false, and it’s not a first-degree equation in one variable—because 
there is no variable! Here are several examples:

 x = 0
 3x = 0
 −4x = 0
 x + 3 = 0
 x − 4 = 0
 5x + 2 = 0
 5x − 2 = 0
 −5x + 2 = 0
 −5x − 2 = 0

Here’s a challenge!
Imagine that you are working on a problem in physics, engineering, or some other branch of science and 
you come across this equation:

4/x − 8/k = 0
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Table 12-17. Streamlined process for solving the equation 
6a − 3x /(bc) = −24d, provided b ≠ 0 and c ≠ 0.

Statements Reasons

6a − 3x /(bc) = −24d This is the equation we are given
−3x /(bc) = −6a − 24d Subtract 6a from each side
3x /(bc) = 6a + 24d Multiply through by −1
3x = (6a + 24d )(bc) Multiply through by (bc)
3x = 6abc + 24dbc Right-hand distributive law for multiplication 

 over addition
3x = 6abc + 24bcd Commutative law for multiplication in second 
  addend on right side
x = (6abc + 24bcd )/3 Divide through by 3
x = 2abc + 8bcd Right-hand distributive law for division over 

 addition
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where k is a constant. Can this be rearranged into standard first-degree equation form? If so, how? If not, 
why not? What is the significance of the result?

Solution
Because k is a constant, the quantity (8/k) must also be a constant, and can be treated as one. However, 
k cannot be allowed to equal 0, because in the equation as stated, it appears in the denominator of a fraction. 
With that in mind, you can add the quantity (8/k) to each side of the equation, getting

4/x − 8/k + 8/k = 8/k

which simplifies to

4/x = 8/k

Using the rule of cross-multiplication, you know that

4k = 8x

Now you can add −8x to each side, getting

−8x + 4k = −8x + 8x

which simplifies to

−8x + 4k = 0

This is in standard first-degree form, ax + b = 0, if you let a = −8 and b = 4k. Therefore, the original equa-
tion is a first-degree equation. At first glance, it might seem that the original equation can’t be first-degree, 
because it looks as if x, which is the denominator of a fraction, is raised to the −1 power. But if a single-
variable equation can be converted into standard first-degree form, then it is a first-degree equation.

Here’s another challenge!
Suppose you come across this equation in a physics or engineering problem. Note the similarity of this to 
the equation in the previous challenge:

4/x = 0

Can this be rearranged into standard first-degree equation form? If so, how? If not, why not? What is the 
significance of the result?

Solution
You can rewrite this as

4/x = 0/1

Then you can try using the rule of cross-multiplication, getting

4 = 0x



If you reverse the sense of the equation, you have

0x = 4

Now you can subtract 4 from each side, getting

0x − 4 = 0

It’s tempting to think that this is in standard form for a first-degree equation. But the constant by which 
you multiply x (called the coefficient of x) is 0, so the variable x becomes meaningless. No matter what real 
number you choose for x, you get an absurd result.

Word Problems
Centuries ago, the algebra in this chapter was unknown, even to the best mathematicians. 
Problems that seem simple to us were difficult for them. When they encountered word problems
like the ones that follow, they often sought out solutions by making educated guesses until 
they “got lucky.” We have a better way.

Problem A

Imagine a number. We add it to half of itself, and then add the result to 1/5 of itself. The final 
sum is equal to 51/10. What is the original number?

Solution A

The first step in solving any word problem is to set up an equation representing that problem. 
Let’s call our unknown number x. The statement of the problem tells us that if we take x, then
add x /2 to that, and then add x /5 to that, we get 51/10. The equation is

x + x /2 + x /5 = 51/10

We can multiply through by 10 to get

10x + 5x + 2x = 51

Let’s apply the right-hand distributive law for multiplication over addition “in reverse” on the 
left side of the equation. That gives us

(10 + 5 + 2)x = 51

which simplifies to

17x = 51

We can divide through by 17 and get

x = 3

Word Problems  203



204 First-Degree Equations in One Variable

Problem B

The old Widow Johnson sold all her property and put the cash into a savings account. 
The account contained $150,000 when she died. She left two children: Jane and Jack. 
Jane got married and then, like her mother, became a widow. Jane has two children to 
support now, and Jack is a bachelor living alone. Knowing that Jane would likely need 
more money than Jack, the old Widow Johnson, in the wisdom of her waning weeks, 
decided that Jane ought to get three times as much of the inheritance as Jack. How much 
did each child get?

Solution B

Let’s call Jack’s share of the inheritance, in dollars, x. Then Jane got 3x. The total inheritance, 
in dollars, was 150,000. Therefore,

x + 3x = 150,000

We can simplify this to

4x = 150,000

Then we divide through by 4 to get

x = 37,500

Therefore, Jack received $37,500. Jane got the other portion of the inheritance. That 
was 3 × $37,500, or $112,500. We can also figure Jane’s share by noting that she got 
$150,000 − $37,500, or $112,500.

Problem C

Solve the previous problem by letting y represent Jane’s share of the inheritance, in dollars, 
rather than Jack’s share.

Solution C

If we call Jane’s share of the inheritance y, in dollars, then Jack’s share was y /3. When we set 
up the equation on this basis, we get

y + y /3 = 150,000

which can be simplified to

(4/3)y = 150,000

If we multiply through by 3/4, we get

(3/4)(4/3)y = 3/4 × 150,000



which simplifies to

y = 112,500

Jane’s share was therefore $112,500. Jack got the other portion, which was 1/3 of $112,500, 
or $37,500. We can also figure Jack’s share by noting that he got $150,000 − $112,500, or 
$37,500.

Problem D

The old Widower Jones (who was a good friend of the old Widow Johnson) sold all his prop-
erty and put the money into a savings account. The account balance was $130,000 when he 
died. He left three children: Joann, Jill, and Judy. All three are married today, and well-off. 
Nevertheless, the old Widower Jones decreed, in the dullness of his demise, that Joann should 
get $10,000 less than Jill, and Jill should get $20,000 less than Judy. How much did each 
child get?

Solution D

Let’s say that x  was the amount, in dollars, that Joann received. Then Jill got x + 10,000 dol-
lars. Judy got (x + 10,000) + 20,000 dollars, or x + 30,000 dollars. We have

x + (x + 10,000) + (x + 30,000) = 130,000

Ungrouping these addends and then rearranging them according to the commutative law for 
addition, we obtain

x + x + x + 10,000 + 30,000 = 130,000

which simplifies to

3x + 40,000 = 130,000

Subtracting 40,000 from each side gives us

3x = 90,000

Dividing through by 3, we get

x = 30,000

That means Joann received $30,000. Jill got $10,000 more than Joann, or $40,000. Judy got 
$20,000 more than Jill, or $60,000.
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Are you confused?
Suppose you’re trying to solve a word problem, and you set up an equation in one variable to repre-
sent it. You hope to get a first-degree equation. If you’re lucky, you’ll be able to get the equation into 
the form

ax + b = 0

where a and b are constants. However, this might not be possible. If you can’t get the equation into the 
standard form for a first-degree equation, you’ll have to use more powerful equation-solving techniques 
than those in this chapter. You’ll learn about them in Part 3.

Here’s a challenge!
Try playing the following little number game. This example is only one of infinitely many variations on 
the same theme. Choose any real number you want. Perform the following operations in this order:

• Multiply the number you have chosen by 2.
• Subtract 10 from the previous result.
• Multiply the previous result by 2.
• Add 60 to the previous result.
• Divide the previous result by 4.
• Subtract the number you originally picked.
• You will end up with 10, no matter what number you originally chose.

Explain how this trick works.

Solution
Games like this are fabricated by “reverse engineering.” You pick the number that you want the game to 
end up at (in this case 10), and then perform multiple operations on successive results to obtain x. You can 
see how this example was put together by going through the above sequence of steps backward, replacing 
every addition with subtraction, every subtraction with addition, every multiplication with division, and 
every division with multiplication. You’ll get this sequence of operations:

• Start with 10.
• Add x, obtaining 10 + x.
• Multiply the previous result by 4, getting 40 + 4x.
• Subtract 60 from the previous result, getting −20 + 4x.
• Divide the previous result by 2, getting −10 + 2x.
• Add 10 to the previous result, getting 2x.
• Divide the previous result by 2, getting x.

When you build games of this sort, you must never multiply or divide by any expression containing x. If 
you do that, you make it possible for someone to defeat the trick by choosing x such that division by 0 
occurs somewhere in the sequence of steps.



Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  Using the S/R table method, morph this into standard form for a first-degree equation 
in one variable:

4x + 4 = 2x − 2

 2.  Using the S/R table method, morph this into standard form for a first-degree equation 
in one variable:

x /3 = 6x + 2

 3.  Using the S/R table method, morph this into standard form for a first-degree equation 
in one variable:

x − 7 = 7x + x /7

 4.  Using the narration method, morph this into standard form for a first-degree equation 
in one variable:

x /3 + x /6 = 12

 5.  Solve, in no more than two steps each, the standard-form equations you derived in 
Probs. 1 through 4.

 6.  When you multiply a certain number by 2, then add 8 to that product, and divide that 
sum by 4, you get −1. Find the number by devising a first-degree equation in x, and 
then solving for x.

 7.  Suppose we take a certain number, and then subtract 1/10 of itself. After that, we 
divide the result by 2, and end up with 135. Find the number by devising a first-degree 
equation in x, and then solving for x.

 8.  Bill weighs 10 kilograms (kg) more than Bruce, and Bruce weighs 5 kg more than 
Bonnie. The combined weight of all three people is 200 kg. What does each person 
weigh?

 9.  Imagine that we have a motorboat with a maximum water speed (the speed relative to 
the water it’s floating on) of 18 miles per hour (mi/h). We make a trip upstream from 
our cabin to our cousins’ cabin, a distance of 18 miles (mi), running the boat at top 
speed all the way. The trip takes 1 hour and 12 minutes (1 h 12 min). We would expect 
it to take exactly 1 h if there were no current in the river. But the current, which we 
were fighting, slowed us down. How fast was the river flowing? Assume that the river 
flowed at the same speed all during our journey.

 10.  Assuming the river keeps flowing at the same speed as we determined when we solved Prob. 9, 
and our boat’s water speed is always 18 mi/h, how long will it take us to travel downstream 
from our cousins’ cabin back to our own? Here’s a hint: The travel time (in hours) equals the 
distance traveled (in miles) divided by the constant speed (in miles per hour).
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CHAPTER

1 3

Mappings, Relations, 
and Functions

When the elements of two sets are associated with each other in an organized way, the asso-
ciation is called a mapping. When the set elements are numbers, a mapping is often called 
a relation. A function is a relation that has special characteristics about which you’ll learn in 
this chapter.

Mapping “Territories”
Imagine two sets of points, defined by the shaded rectangles in Fig. 13-1. Suppose you’re 
interested in the subsets shown by the hatched ovals. You want to match the points in the top 
oval with those in the bottom oval by means of a defined scheme. When you do this, you map
the elements of one set to the elements of the other set.

Point matching

Think of Fig. 13-1 as portraying two vans carrying people, some of whom are using cell 
phones to send or receive text messages. The people in one van (call it the upper van) are 
represented by all the points inside the top rectangle, and the people in the other van (call 
it the lower van) are represented by all the points inside the bottom rectangle. Within each 
van, the people involved in cell-phone “texting” are represented by points inside the ovals. 
The arrows indicate the direction of the mapping—in this case, the direction in which 
messages are sent.

Domain and range

All the points actively involved in the mapping shown by Fig. 13-1 are inside the ovals. The 
top oval is called the domain of the mapping. Sometimes it’s called the essential domain. The 
bottom oval is called the range. Here, the domain contains six points, and the range contains 
five points. In this example, the domain of the mapping is exactly the set of people in the 
upper van who are sending messages. The range is exactly the set of people in the lower van 
who are receiving messages.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



Maximal domain and co-domain

The large rectangles in Fig. 13-1 contain more points than those inside the ovals. The top 
rectangle is called the maximal domain of the mapping, and the bottom rectangle is called the 
co-domain. Some, but not all, of the points inside the maximal domain and the co-domain are 
actively involved in the mapping. In our example, the maximal domain of the mapping is the 
set of all people in the upper van, whether they’re sending messages or not. The co-domain is 
the set of all people in the lower van, whether they’re receiving messages or not.

The domain is a subset of the maximal domain. The range is a subset of the co-domain. 
Sometimes, the domain and the maximal domain of a mapping are identical. If that were 
the case in Fig. 13-1, then the hatched region would fill the top rectangle. Similarly, the co-
domain and the range of a mapping might be identical. If that were true in Fig. 13-1, then the 
hatched region would fill the bottom rectangle.

Ordered pairs

When you have a mapping from the elements of one set to the elements of another set, you can 
define the mapping in terms of ordered pairs. An ordered pair is an expression in parentheses 

Mapping “Territories”  209

Maximal domain

Co-domain
Range

a

b

c

d

e

v

w

x

y z

f

Domain

Figure 13-1  A mapping between two sets.



210 Mappings, Relations, and Functions

that contains two items separated by a comma. The first item represents an element of the 
domain. The second element represents an element of the range. In the situation shown by 
Fig. 13-1, the ordered pairs are (a,v), (b,w), (c,v), (c,x), (c,z), (d,y), (e,z), and (f,y). When you 
write an ordered pair, you can (but don't have to) put a space after the comma, as you would 
in an ordinary sequence or a list of set elements.

Are you confused?
In the example of Fig. 13-1, the correspondence between the points in the domain and the points in the 
range is not one-to-one. Point c in the domain maps to three points in the range. Points v, y, and z in the 
range are each mapped from two points in the domain. You can imagine that in the upper van, one person 
is sending messages to three different people in the lower van. In the lower van, three people are receiving 
messages from two different senders. “Dupes” like this are okay in a general mapping. In some situations, 
“dupes” are not allowed, as you’ll see later in this chapter.

Here’s a challenge!
Examine Fig. 13-2. Suppose the upper rectangle represents the set of all positive real numbers, and the 
lower rectangle represents the set of all negative real numbers. Also imagine that the upper oval represents 

Positive reals

Positive
rationals

Negative
rationals

Negative reals

Mapping:
Multiply by –1

Figure 13-2  A mapping from the positive rational 
numbers to the negative rational numbers.



the set of all positive rationals, and the lower oval represents the set of all negative rationals. Here’s the 
mapping: any number x in the upper oval is mapped into a number y in the lower oval by taking its addi-
tive inverse (multiplying x by −1). How can we define the ordered pairs in this mapping? What is the 
domain? The maximal domain? The range? The co-domain? What happens in this situation if we want to 
map a negative real number to something, or if we want to map something to a positive real number?

Solution
We can define the ordered pairs (x,y) as always having the form (x,−x), where x is rational and x > 0. The 
domain is the set of all positive rationals. The maximal domain is the set of all positive reals. The range is the 
set of all negative rationals. The co-domain is the set of all negative reals. This mapping does not tell us how to 
map a negative real number to anything. It also fails to tell us how we would map anything to a positive real.

Types of Mappings
Mathematicians have special names for different types of mappings. You should know what 
these terms mean, even though they may seem strange at first! Imagine two sets of objects, 
called set X and set Y. Let the variable x represent an element in set X, and let the variable y
represent an element in set Y. There are three major ways in which the elements of X can be 
mapped to the elements of Y.

Injection

Figure 13-3 shows a situation in which elements of set X are mapped to elements of set Y. This
mapping has a domain that is a subset of X, and a range that is a subset of Y. Each element x
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Domain

Range

Set X = all possible
values of variable x

Set Y = all possible
values of variable y

Figure 13-3  An example of an injection. Every element 
x maps into a single element y, and every 
element y maps from a single element x.
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in set X corresponds to one, but only one, element y in set Y. A mapping of this type is called 
an injection. You may occasionally hear an injection called a one-to-one mapping, or simply 
one-to-one. But that’s a little misleading, because an injection doesn’t necessarily involve all the 
elements of either set X or set Y.

Surjection

The mapping in Fig. 13-4 is a little different. Here, elements of X are mapped to all the ele-
ments of Y. The domain is a subset of X, but the range is identical to Y. This type of mapping 
is called a surjection. Because it maps elements of set X completely onto set Y, a surjection 
is sometimes called an onto mapping, or simply onto. A surjection can be one-to-one, but it 
doesn’t have to be, and in this example, it clearly isn’t!

Bijection

Figure 13-5 shows an example of a third type of mapping, called a bijection, between two sets 
X and Y. This is an injection that is also a surjection. Another expression you might hear is, “A 
bijection is both one-to-one and onto.” The old-fashioned term for a bijection is one-to-one cor-
respondence. That term is rarely used nowadays, because it sounds too much like “one-to-one,” 
which some people call an injection.

Domain

Range = set Y = all possible
values of variable y

Set X = all possible
values of variable x

Figure 13-4  An example of a surjection. Every possible 
element y is accounted for, and is the result 
of a mapping from at least one element x.
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Are you confused?
In Fig. 13-3, the domain is shown as a proper subset of set X, and the range is shown as a proper subset 
of Y. However, the domain could be the entire set X, or the range could be the entire set Y, or both. (If both 
were true, we’d have a bijection, which is a special sort of injection!) In Fig. 13-4, the domain is shown as 
a proper subset of X, but the range is shown as the entire set Y. Again, the domain could contain all of the 
elements in set X.

Here’s a challenge!
Let X  be the set of all real numbers x larger than 0 but smaller than 1. Let Y  be the set of all real numbers 
y strictly larger than 1. Give an example of an injection from X into Y. Give an example of a bijection 
between X and Y.

Solution
If we add 1 to any number x in set X, we get a number y in set Y that’s larger than 1 but smaller than 2. 
We can write

y = x + 1

Range = set Y = all possible
values of variable y

For every x, there is
exactly one y

For every y,
there is
exactly one x

Domain = set X =

all possible values 

of variable x

Figure 13-5  An example of a bijection. It is both an injection 
and a surjection.
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This mapping is an injection. The domain is the whole set X, and the range happens to be a proper subset 
of Y, as shown in Fig. 13-6. This mapping is one-to-one, because for any x in the domain, there’s a single 
y in the range, and vice-versa. But it’s not onto the entire set Y.

Now let’s consider a different mapping. If we take the reciprocal of any number x in set X, we get a 
number y in set Y that’s larger than 1. We can write

y = 1/x

This mapping is a bijection. No matter what x between 0 and 1 we choose, the reciprocal is always a 
unique (one and only one, or exactly one) real number y larger than 1. Conversely, no matter what real 
number y larger than 1 we choose, we can always find a unique real number x between 0 and 1 that has 
y as its reciprocal. This mapping, shown in Fig. 13-7, is a bijection, because every element in set Y is 
accounted for.

1
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5

1
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0
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Set X

Set Y

y = x + 1

Figure 13-6  An injection from 
the set X of all reals 
between, but not 
including, 0 and 1 to 
the set Y of all reals 
strictly larger than 1. 
Open circles indicate 
points not in the 
domain and range, 
which are shown as 
heavy gray lines.
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y = 1/x

Figure 13-7  A bijection between 
the set X of all reals 
between 0 and 1 and 
the set Y of all reals 
strictly larger than 1. 
Open circles indicate 
points not included 
in the domain and 
range, which are 
shown as heavy gray 
lines.



Examples of Relations
Whenever you can express a mapping in terms of ordered pairs, then that mapping is a relation.
The examples in the “challenges” you’ve seen so far in this chapter are all relations. This section 
will give you some more examples.

Independent vs. dependent variable

In a relation, the elements of the domain and the range can be represented by variables. 
If we say that x is a nonspecific element of the domain and y is a nonspecific element of 
the range, then x is the independent variable and y is the dependent variable. A relation 
therefore maps values of the independent variable to values of the dependent variable. 
We can also call x the “input variable” and y the “output variable,” as computer scientists 
sometimes do.

An injective relation

Relations between sets of numbers are often represented by equations. We write the depend-
ent variable all by itself on the left side of the equality symbol, and then write an expres-
sion containing the independent variable on the right side. Ordered pairs are produced 
by putting values for x into the equation, and then calculating the values for y. Here is an 
example:

y = x + 2

for all real numbers x. When we put specific values of x into this, we get results such as:

• If x = −5, then (x,y) = (−5,−3)
• If x = −1, then (x,y) = (−1,1)
• If x = 0, then (x,y) = (0,2)
• If x = 3/2, then (x,y) = (3/2,7/2)
• If x = 4, then (x,y) = (4.6)
• If x = 25, then (x,y) = (25,27)

This mapping is one-to-one, because for every value of x, there is exactly one value of y, and 
vice-versa. By definition, therefore, the mapping is an injection. We can call this relation an 
injective relation.

A surjective relation

Suppose both the maximal domain X and the co-domain Y of a particular mapping include 
all  real numbers. Let the essential domain be the set of all nonnegative real numbers, that is, 
the set of all x such that x ≥ 0. Let the range be the set of all real numbers y, so it is the same 
as the co-domain. Now consider this equation:

y = ±(x1/2)
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When we plug specific values of the independent variable x into this equation, we get results 
such as:

• If x = 1/9, then (x,y) = (1/9,1/3) or (1/9,−1/3)
• If x = 1/4, then (x,y) = (1/4,1/2) or (1/4,−1/2)
• If x = 1, then (x,y) = (1,1) or (1,−1)
• If x = 4, then (x,y) = (4,2) or (4,−2)
• If x = 9, then (x,y) = (9,3) or (9,−3)
• If x = 0, then (x,y) = (0,0)

This mapping is clearly not an injection! For every nonzero value of x, there are two values of y.
But the mapping is onto the entire co-domain. No matter what real number y we choose, we 
can square it and get a nonnegative real number x. That means the mapping is a surjection, so 
we can call this relation a surjective relation.

A bijective relation

Let’s modify the relation in the preceding section by restricting the co-domain and range Y to 
the set of nonnegative reals. Then we get this equation to represent it:

y = x1/2

When there is no sign in front of an expression raised to the 1/2 power, then by convention, 
the 1/2 power indicates the nonnegative square root. Now there’s only one output value y for 
every input value x. We’ve simply declared that all negative output values are invalid! Here are 
some of the ordered pairs in this relation:

• If x = 1/9, then (x,y) = (1/9,1/3)
• If x = 1/4, then (x,y) = (1/4,1/2)
• If x = 1, then (x,y) = (1,1)
• If x = 4, then (x,y) = (4,2)
• If x = 9, then (x,y) = (9,3)
• If x = 0, then (x,y) = (0,0)

We now have a one-to-one mapping, and it’s also onto the entire co-domain. That means it’s 
both injective and surjective. The equation

y = x1/2

represents a bijective relation within the set of nonnegative reals. No matter what nonnega-
tive real number x we plug into this relation, we get a unique nonnegative real number y
out of it. It also works the opposite way: No matter what nonnegative real y we want to 
get out of this relation, we can find a unique nonnegative real x to plug in that will give 
it to us.



Are you confused?
Graphs can make relations easier to understand. In the next chapter, you’ll learn about one of the most 
common graphing schemes in mathematics, and you’ll see how the above relations look when illustrated 
that way.

Here’s a challenge!
Using Fig. 13-8 as a guide, define a relation that maps the set of natural numbers onto the set of rational 
numbers. List the first 13 ordered pairs in this relation. Is this relation injective? Is it surjective? Is it 
bijective?

Solution
Let’s represent natural numbers by the independent variable n, and corresponding rational numbers by 
the dependent variable r. We can start with 0 for n, and map it into the rational number 0 for r. Then we 
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Figure 13-8  This two-dimensional list of all rationals (duplicated 
from Chap. 9) suggests a way to define a relation 
between the set of naturals and the set of rationals.
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can proceed in Fig. 13-8 along the dashed “square spiral,” increasing n by 1 each time we move to the next 
block, and letting r be equal to the rational number in the block. When we follow that pattern, the ordered 
pairs in the form (n,r) are (0,0), (1,1/2), (2,1), (3,−1/2), (4,−1), (5,1/3), (6,2/3), (7,2/2), (8,2), (9,−1/3),
(10,−2/3), (11,−2/2), (12,−2), and so on forever!

Some of the r values in the range of this relation have more than one n counterpart in the domain. For 
example, if r = 1, then n = 2. But when r = 2/2 (which is equal to 1), we have n = 7. The same thing hap-
pens with many other rationals. For example, the ordered pairs (4,−1) and (11,−2/2) have the same value 
of r, because −1 = −2/2. If we keep writing out the list of ordered pairs for a long time, we’ll keep coming 
across “dupes” such as this.

An injection must be one-to-one, but the relation we’ve defined here is not of that sort! Because it’s 
not an injection, this relation can’t be a bijection. But it’s a surjection. For every rational number r, we 
can always find at least one natural number n that maps to it. Remember that in Chap. 9, we deliberately 
engineered this two-dimensional list so it would account for every possible rational number.

Examples of Functions
A function is a relation in which every element in the domain has at most one element in the 
range. That is, for every value of the independent variable, there can never be more than one 
value for the dependent variable. Even so, a single value of the dependent variable might be 
mapped from two, three, four, or more values of the independent variable—even infinitely 
many. Let’s look at some examples of functions.

Add 1 to the input

Consider a relation in which the independent variable is x and the dependent variable is y,
and for which the domain and range are both the entire set of real numbers. Our relation is 
defined as follows:

y = x + 1

This is a function between x and y, because there’s never more than one value of y for any value 
of x. In fact, for every value of x, there is exactly one value of y. This function is bijective. It 
maps values of x onto the entire set R, and it is one-to-one.

Mathematicians name functions by giving them letters of the alphabet such as f, g, and
h. In this notation, the dependent variable is replaced by the function letter followed by the 
independent variable in parentheses. We might write

f   (x) = x + 1

to represent the above equation, and then we can say, “f of x equals x plus 1.”

Square the input

Now let’s look at another simple relation. The independent variable is v and the dependent 
variable is w. The domain is the entire set of reals, and the range is the set of nonnegative reals. 
Here’s the equation that represents the relation:

w = v2



This is another example of a function. If we call it g, we can write

g(v) = v2

For every value of v in the domain of g, there is exactly one value of w, which we can also call 
g(v), in the range. But the reverse is not true. For every nonzero value of w in the range of g,
there are two values of v in the domain. These two values are additive inverses (negatives) of 
each other. For example, if w = 49, then v = 7 or v = −7. This is not a problem; a relation can 
be many-to-one and still be a function. The trouble happens when a relation is one-to-many. 
Then it can’t be a function.

Our function g is not injective because it’s two-to-one, not one-to-one (except when 
v = 0). Therefore, it cannot be bijective. The function g is surjective, however, because every 
possible value in its range (the set of nonnegative reals) is accounted for. In formal language 
we say, “For any nonnegative real number w in the range of g, there is at least one v in the 
domain such that g(v) = w.”

Cube the input

Here’s another relation. Let’s call the independent variable t and the dependent variable u. The
domain and range are both the entire set of reals. The equation is

u = t3

This is a function. If we call it h, then

h(t) = t3

For every value of t in the domain of h, there is exactly one value of u in the range. The reverse 
is also true. For every value of u in the range of h, there is exactly one t in the domain.

This function is one-to-one, so it’s injective. It maps onto the entire range, so it’s surjective 
as well. That means h is a bijection. 

Are you confused?
As with relations, graphing can be useful when you want to see how functions map values of an independ-
ent variable into values of a dependent variable. Graphs of the above three functions are shown in the next 
chapter.

Here’s a challenge!
With any relation, you can transpose the values of the independent and dependent variables while leav-
ing their names the same. You can also transpose the domain and the range. When you do these things, 
you get another relation, which is called the inverse relation (or simply the inverse if the context is clear). 
The inverse of a relation is denoted by writing a superscript −1 after the name of the relation. If you have 
h(z), its inverse is written h−1(z). The inverse of a function, however, is not necessarily another function! 
Look again at the three functions f, g, and h above. The inverse of one of these functions is not a function. 
Which one?
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Solution
The inverse of g is not a function. Here’s the function again. Remember that the domain is the entire set 
of reals, and the range is the set of nonnegative reals:

w = g (v) = v2

If you take the equation w = v2 and transpose the positions of the independent and dependent variables, 
you get

v = w 2

This is the same as

w = ±(v 1/2)

The plus-or-minus symbol is important here! It indicates that for every value of the independent variable 
v you plug into this relation, you’ll get two values of w, one positive and the other negative. You can also 
write

g−1(v) = ±(v 1/2)

The function g is two-to-one (except when v = 0), and that’s okay. But the inverse is one-to-two (except 
when w = 0). That makes g−1 a legitimate relation, but prevents it from being a function.

The other two functions above have inverses that are also functions. Both f and h are one-to-one, so 
their inverses must also be one-to-one. We have

f (x ) = x + 1

and

f   –1(x ) = x − 1

We also have

h (t ) = t 3

and

h −1(t) = t1/3

If a function is one-to-one over a certain domain and range, then you can transpose the values of the inde-
pendent and dependent variables while leaving their names the same, and you can transpose the domain 
and range. The resulting inverse is a function. If a function is many-to-one, then its inverse is one-to-
many, and is therefore not a function.



Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  Imagine a dance at which there are 15 boys and 15 girls. Every boy writes his name on a 
slip of paper, and then puts the slip into a jar. (No two boys have the same name.) The 
girls pick slips out of the jar, one at a time and one for each girl, to determine who their 
dance partner will be. If we think of this action as a mapping from the set of boys to the 
set of girls, what type of mapping is this?

 2.  Imagine another dance at which there are 10 boys and 15 girls. Every girl writes her 
name on a slip of paper, and then puts the slip into a jar. (No two girls have the same 
name.) The boys pick slips out of the jar, with every other boy taking two slips instead 
of only one, so all the slips get taken. This determines how the dance partners will 
be assigned. Five of the boys end up dancing with one girl, but the other five have to 
contend with two girls! If we think of this action as a mapping from the set of boys to 
the set of girls, what type of mapping is it?

 3.  If we think of the mapping in Prob. 2 in reverse (that is, from the set of girls to the set 
of boys) what type of mapping is it?

 4.  Imagine that you and I were once members of Internet Network Alpha, which had 
60,000 members. We were not totally honorable characters, you and I. We conspired 
to send a mass e-mail message (also called spam) to every single one of the 175,000 
members of Internet Network Beta. Let A be the set of all members of Alpha at that 
time, and let B be the set of all members of Beta. Suppose that we had the latest 
programs to defeat antispam software in other people’s computers, so we succeeded in 
our dubious quest. Every single member of Beta got our message. What sort of mapping 
did we carry out from set A to set B ? What was the maximal domain? What was the 
essential domain? What was the co-domain? What was the range? (Note: As a result of 
our behavior, we were kicked out of Internet Network Alpha, a punishment which, we 
realize today, was well deserved.)

 5.  Consider the set Q of all rational numbers and the set R of all real numbers. Suppose we 
devise a relation from Q to R that takes every integer q in Q and doubles it to get an even 
integer r in R. The maximal domain is Q, and the essential domain is Z, the set of integers, 
which is a proper subset of Q. The co-domain is R, and the range is Zeven, the set of all even 
integers, which is a proper subset of R. What type of relation from Q to R have we devised?

 6.  Suppose that we create a relation between the set Q of rational numbers and the set Z
of integers. To generate an integer z from a rational q, we find the fractional equivalent 
of q in lowest terms, and then chop off the denominator. If we let q be the independent 
variable and z be the dependent variable, what type of relation is this? Is it injective? Is 
it surjective? Is it bijective?

 7.  Suppose that we create a relation between the set Z of integers and the set Q of 
rationals. To generate a rational q from a nonzero integer z, we find the reciprocal of 
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z (that is, we divide 1 by z). If z = 0, we say that q is not defined. If we let z be the 
independent variable and q be the dependent variable, is this relation injective? Is it 
surjective? Is it bijective?

 8.  Again, consider a relation between the set Z of integers and the set Q of rationals. 
Imagine that this relation works in the same way as the relation in Prob. 7, but with one 
exception. If z = 0, we say that q = 0 by default. If we let z be the independent variable 
and q be the dependent variable, is this relation injective? Surjective? Bijective?

 9.  Consider the relation y = x 4, where the domain is the entire set of reals and the range 
is the set of nonnegative reals. Is this relation a function? If so, why? If not, why not? 
Is the relation injective? Is it surjective? Is it bijective?

 10.  Imagine that the values of the independent and dependent variables in Prob. 9 are 
transposed while leaving their names the same. Also suppose that the domain of the 
new relation is the set of nonnegative reals, and the range of the new relation is the 
entire set of reals. Is this inverse relation a function? If so, why? If not, why not? Is the 
relation injective? Is it surjective? Is it bijective?
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CHAPTER

1 4

The Cartesian Plane

In the 1600s, the French mathematician Rene Descartes (pronounced “re-NAY day-CART”) 
invented a way to illustrate relations and functions. It became a graphing scheme now known 
as Cartesian (pronounced “car-TEE-zhun”) coordinates or the Cartesian plane.

Two Number Lines
The Cartesian plane is put together by placing two real-number lines so they intersect at a 
right angle. The number lines usually intersect at their 0 points. The point where the axes 
intersect is called the origin.

Variables and ordered pairs

Figure 14-1 shows a simple set of Cartesian coordinates. The independent variable is por-
trayed along a horizontal line, and the dependent variable is portrayed along a vertical line. 
The number-line scales are graduated in increments of the same size.

Figure 14-2 shows how several ordered pairs of the form (x, y) are plotted as points on the 
Cartesian plane. Here, x is the independent variable and y is the dependent variable.

The quadrants

Any pair of intersecting lines divides a plane into four parts. In the Cartesian system, these 
parts are called quadrants (Fig. 14-3):

• In the first quadrant, both variables are positive.
• In the second quadrant, the independent variable is negative and the dependent variable 

is positive.
• In the third quadrant, both variables are negative.
• In the fourth quadrant, the independent variable is positive and the dependent variable 

is negative.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Figure 14-1  The Cartesian plane consists of two 
real-number lines intersecting at a right 
angle, forming axes for the variables.
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Figure 14-2  Five ordered pairs plotted as points on the 
Cartesian plane. The dashed lines are for 
axis location reference only.



If a point lies exactly on one of the axes or at the origin, then it is not in any quadrant. The 
quadrants are sometimes labeled with Roman numerals. In most Cartesian graphs, they’re 
located like this:

• Quadrant I is at the upper right
• Quadrant II is at the upper left
• Quadrant III is at the lower left
• Quadrant IV is at the lower right

Axis increments

In a true Cartesian coordinate plane, both axes are linear, and both axes are graduated in 
increments of the same size. This means that for any given axis, the change in value is always 
directly proportional to the physical displacement. If we move 1/4 of an inch along an axis 
and the value changes by 1 unit, then that fact is true everywhere along that axis and it is also 
true everywhere along the other axis.

In a more generalized system called rectangular coordinates or the rectangular coordinate 
plane, the two axes do not have to be graduated in the same increments. The value on one axis 
might change by 1 unit for every 1/4 of an inch, while the value on the other axis changes by 
25 units for every 1/4 of an inch. The increments we select for each axis depend on what sort 
of relation or function we want to graph. It’s best to choose the increments so a graph is easy 
to read.
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Are you confused?
The coordinate planes in Figs. 14-1, 14-2, and 14-3 show values only to up to ±6 for each variable. If we 
want to show graphs “far out,” we can increase the numbers on one or both scales. Instead of going from 
−6 to 6 in increments of 1 unit per division, we can go from −60 to 60 in increments of 10 units per 
division, or from −3,000 to 3,000 in increments of 500 units per division. If we want to graph something 
“close in,” we can make the numbers on the scales smaller. We might go from −0.6 to 0.6 in increments 
of 0.1 unit per division, or from −0.0012 to 0.0012 in increments of 0.0002 unit per division! Our use 
of 6 increments on each of the four scales is arbitrary. We can have more or fewer, as long as we draw the 
coordinate system so it’s easy to read.

Here’s a challenge!
Imagine an ordered pair (x, y). You have plotted its point on the Cartesian plane. Neither x nor y is equal 
to 0, so the point does not fall on either axis. What will happen to the location of the point if you multiply 
both x and y by −1?

Solution
The point will move diagonally to the opposite quadrant. In other words, it will go “kitty-corner” across 
the coordinate plane, as follows:

• If it starts out in the first quadrant, it will move to the third.
• If it starts out in the second quadrant, it will move to the fourth.
• If it starts out in the third quadrant, it will move to the first.
• If it starts out in the fourth quadrant, it will move to the second.

If you have trouble envisioning this, draw a Cartesian plane on a piece of graph paper. Then plot a specific 
point or two in each quadrant. Calculate how the x and y values change when you multiply both of them 
by −1, and then plot the new points.

Three Relations
To graph a relation in Cartesian coordinates, we can pick a few numerical values for the 
independent variable, calculate the resulting values for the dependent variable, and plot the 
ordered pairs as points. When we’ve plotted enough points so we’re reasonably sure we know 
what the graph will look like, we can connect the points with a smooth line or curve. This line 
or curve is the actual graph.

Add 2 to the input

Figure 14-4 shows some points plotted in Cartesian coordinates for the following relation, 
which was the first one we evaluated in Chap. 13:

y = x + 2

These points lie along a straight line. We can plot more points for the relation, and they will 
always lie along the same straight line. The line is the graph of the relation.



Positive/negative square root

The second of the three relations we evaluated in Chap. 13 took the positive or negative 
square root of x, as follows:

y = ±(x1/2)

Figure 14-5 shows some points for this relation, along with the curve that connects them. This 
curve is called a parabola. It is characteristic of quadratic equations, which we’ll study in Part 3. 

Nonnegative square root

The third relation we looked at in Chap. 13 was the same as the second one, but without the 
negative values of y. It involved taking the nonnegative square root:

y = x1/2

Some points for this relation are plotted in Fig. 14-6, along with the curve that connects them. 
It appears as the nonnegative half of the curve in Fig. 14-5.

Are you confused?
How many points must you plot before you truly know what the graph of a relation looks like? The best 
answer is, “It depends.” With simple relations such as those in this chapter, a few points are enough. 
With more complicated relations, you might have to plot many points before the complete graph can be 
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Figure 14-4  Cartesian graph of the relation y = x + 2.
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determined. There are computer programs that generate detailed graphs of relations by plotting millions 
of points and connecting them by means of a scheme called curve fitting.

Here’s a challenge!
Draw graphs of the inverses of the three relations in this section.

Solution
First, let’s figure out the equations for these inverse relations. To do that, we must transpose the values of 
the variables without changing their names. We must also transpose the domain and the range. The three 
original relations are

 y = x + 2

 y = ±(x1/2)

 y = x1/2

In Chap. 13, we were given the domains and ranges for these relations. In the first case, the domain and 
range are both the entire set of reals. In the second case, the domain is the set of nonnegative reals, and the 
range is the set of all reals. In the third case, the domain and range are both the set of nonnegative reals. 
Switching the values of the variables by reversing their positions in the original equation, we get

 x = y + 2

 x = ±(y1/2)

 x = y1/2

When we manipulate these equations to get x in terms of y, the results are

 y = x − 2

 y = x 2

 y = (+x)2

When we transpose the domain and the range from the original relations in the first case, they both remain 
the entire set of reals. In the second case, the domain becomes the set of all reals, and the range becomes 
the set of nonnegative reals. In the third case, the domain and range both remain the set of nonnegative 
reals. The plus sign in the last equation means that we consider it only for nonnegative values of x, because 
negative values of x aren’t part of the domain. 

Now that we know the equations for the inverse relations, we’re ready to graph them. A simple trick 
makes it easy to graph the inverse of any relation. We draw the line representing all points where the inde-
pendent and dependent variables have the same value. We can imagine this line, represented by the equation 
y = x in these examples, as a “point reflector.” It works like the “number reflector” for generating negative 
numbers from positive numbers on the number line. (We devised that gimmick in Chap. 3. Now we’re 
operating in two dimensions instead of one.) For any point that’s part of the graph of the original relation, 
we can find its counterpart in the graph of the inverse relation by going to the opposite side of the “point 
reflector,” exactly the same distance away. Figure 14-7 shows how this works. The line connecting a point in 
the original graph and its “mate” in the inverse graph is perpendicular to the “point reflector.” In addition, 
the “point reflector” intersects every point-connecting line exactly in the middle. Technically, we say that the 
“point reflector” is a perpendicular bisector of any line connecting a point with its inverse point.
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When we want to graph the inverse of a relation, we “flip the whole graph over” along a “hinge” cor-
responding to the “point reflector.” That moves every point in the graph of the original relation to its new 
position in the graph of the inverse. When we do this to the graphs from Figs. 14-4, 14-5, and 14-6, we 
get the graphs in Figs.14-8, 14-9, and 14-10 respectively. These graphs show the inverses of the original 
three relations. Note that the positions of the x and y axes have not been switched, but the values of the 
variables, as well as the domain and range, have been!
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Figure 14-7  Any point in the graph of the inverse of a 
relation can be located on the basis of its 
“mate” in the graph of the original relation.
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Figure 14-8  Cartesian graph of the relation y = x − 2.
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Figure 14-10  Cartesian graph of the relation y = (+x)2.
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Three Functions
The process for graphing a function is the same as it is for graphing a relation. Remember, a 
function is nothing more than a relation with special properties! In this section, we’ll look at 
the graphs of the three functions we evaluated in Chap. 13.

Add 1 to the input

Figure 14-11 shows some points plotted in Cartesian coordinates, along with the straight line 
that connects them, for the following function:

y = x + 1

These points lie along a straight line. Note the similarity between this graph and the one shown in 
Fig. 14-4. The only difference here is that the line is exactly 1 unit lower on the coordinate plane.

Square the input

In Fig. 14-12, several points are plotted, and the curve connecting them is drawn, for the function

w = v 2

This graph is the same curve as the one shown in Fig. 14-9, but the variable names are different.

Cube the input

Figure 14-13 shows what happens when the independent variable is cubed rather than squared. 
Several points, along with the curve connecting them, are plotted for the function

u = t 3
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Figure 14-11  Cartesian graph of the function y = x + 1.
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Figure 14-12  Cartesian graph of the function w = v 2.
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Note the difference in “magnification” between the t and u axes. This difference makes the graph 
fit nicely into the available space. Even though an increment on the u axis represents 10 times the 
numerical change as an increment of the same length on the t axis, both axes are linear.

Are you confused?
In Chap. 13, you learned that a function never maps a single value of the independent variable to more 
than one value of the dependent variable. You can use this fact to determine whether or not a given rela-
tion is a function by looking at its graph. Draw a vertical line somewhere on the graph. “Vertical” in this 
context means “parallel to the dependent-variable axis.” Imagine moving this vertical line to the right and 
left. Sometimes—maybe all the time—this vertical line will intersect the graph of the relation. For the 
relation to qualify as a function, the movable vertical line must never intersect the graph at more than one 
point. (It’s okay if there are places, or even large regions, where the vertical line doesn’t intersect the graph 
at all.) This trick can be called the vertical-line test.

Here’s a challenge!
How can you tell, merely by looking at their graphs, which of the three relations in this section have 
inverses that are functions? Don’t actually graph the inverses. You’ll get a chance to do that in the last three 
Practice Exercises.

Solution
You can conduct a horizontal-line test on the graph of a relation to see if its inverse is a function. Draw 
a horizontal line parallel to the independent-variable axis. Imagine moving this horizontal line up and 
down. For the inverse to qualify as a function, this movable line must never intersect the graph of the 
original relation at more than one point. (It’s okay if there are places or regions where the horizontal line 
doesn’t intersect the graph at all.) Now conduct this test on the graphs shown in Figs. 14-11, 14-12, and 
14-13. You’ll see that the line in Fig. 14-11 checks out, so the inverse of this relation is a function. The 
same is true for the relation graphed in Fig. 14-13. But the curve in Fig. 14-12 fails the horizontal-line test! 
That means that the inverse of that relation is not a function.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  Imagine an ordered pair (x, y), and suppose we have plotted its point on the Cartesian 
plane. Neither x nor y is equal to 0, so the point does not fall on either axis. What 
happens to the location of the point if we multiply x by −1 and leave y the same?

 2.  Imagine an ordered pair (x, y), and suppose we have plotted its point on the 
Cartesian plane. Neither x nor y is equal to 0, so the point does not fall on either axis. 
What happens to the location of the point if we multiply y by −1 and leave 
x the same?



 3.  Imagine an ordered pair (x, y), and suppose we have plotted its point on the Cartesian 
plane. Where, in relation to the point for (x, y), will we find the point for (6x, 6y)?
Where, in relation to the point for (x, y), will we find the point for (x /4, y /4)?

 4.  The vertical-line test can be used to see whether or not a graph portrays a function. 
How can we use the same test on a graph to determine whether or not a given 
numerical value is in the domain?

 5.  How can we use the horizontal-line test on a graph to determine whether or not a given 
numerical value is in the range of a function or relation?

 6.  Sketch a graph of the equation y = |x | for all real numbers x. Does this equation 
represent a function of x ?

 7.  Sketch a graph of the equation y = |x + 1| for all real numbers x. Does this equation 
represent a function of x ?

 8.  Sketch a graph of the inverse of y = x + 1. Do this by applying the “point reflector” 
scheme to Fig. 14-11.

 9.  Sketch a graph of the inverse of w = v 2. Do this by applying the “point reflector” 
scheme to Fig. 14-12.

 10.  Sketch a graph of the inverse of u = t 3. Don’t use the “point reflector” scheme from 
Fig. 14-13. Derive the inverse using algebra, and then plot the graph from scratch.
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CHAPTER

1 5

Graphs of Linear Relations

We’ve seen the graphs of some relations and functions. Now it’s time to focus on the graphs of 
linear relations. These always appear as straight lines in the Cartesian plane. In particular, we’re 
interested in the equations and graphs of linear functions—linear relations where the straight-
line graph is not vertical (that is, not parallel to the dependent-variable axis).

Slope-Intercept Form
One of the best known ways to relate the graph of a linear function with its equation 
defines the slope of the line and the point where it crosses the dependent-variable axis. 
A two-variable linear equation of this sort is said to be in slope-intercept form. Let’s call it the 
SI form for short.

What is slope?

The slope of a straight line in the Cartesian plane is an expression of the steepness with which 
the line ramps upward or downward as we move to the right. A horizontal line has a slope of 0. A 
line that ramps upward as we move to the right has positive slope that increases without limit 
as the slant angle approaches 90° (vertical and going straight up). If the line ramps down as 
we move to the right, the slope decreases from 0, becoming more negative without limit as the 
slant angle approaches −90° (vertical and going straight down).

To figure out the exact slope of a line in the Cartesian plane, we must know the 
coordinates of two points on that line. These can be any two points, as long as they’re 
different. The slope of a line passing through two points is equal to the difference in 
the y values divided by the difference in the x values for the points. In this context, 
mathematicians abbreviate “the difference in” by writing the uppercase Greek letter delta (Δ).
These differences are often called increments. The slope of a line is usually symbolized as m.
Therefore,

m = Δy /Δx

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



Sometimes the slope of a straight line is informally called rise over run. This notion works 
as long as the independent variable is on the horizontal axis, the dependent variable is on the 
vertical axis, and we move to the right.

Try two points!

Suppose we see a line in the Cartesian plane, and are able to locate two points on it and deter-
mine their exact coordinates:

(x1, y1) = (−2, 4)

and

(x2, y2) = (3, 5)

The slope is ( y2 − y1), which we call Δy, divided by (x2 − x1), which we call Δx :

 m = Δy /Δx
= (y2 − y1)/(x2 − x1)
= (5 − 4)/[3 − (−2)]
= 1/(3 + 2)
= 1/5

This situation is illustrated in Fig. 15-1.
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Figure 15-1  The slope of a line can be calculated from 
the coordinates of two points on that line.
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Switching the order

We can switch the points (x1, y1) and (x2, y2) and still get the same slope when we calculate it as 
above. That’s because both the numerator and the denominator end up being additive inverses 
(exact negatives) of what they were before. Let’s take

(x1, y1) = (3, 5)

and

(x2, y2) = (−2, 4)

The slope is again equal to Δy /Δx. Calculating, we get

 m = Δy /Δx

= (y2 − y1)/(x2 − x1)

= (4 − 5)/(−2 − 3)

= −1/(−5)

= 1/5

When we know the coordinates of two points on a line, we can figure the slope going from the 
first point to the second, or going from the second point to the first; it doesn’t matter. But we 
must be careful not to confuse the coordinates. We can reverse the external sequence in which 
we work with the points, but we can’t reverse the internal sequence of either of the ordered 
pairs defining those points!

What is the intercept?

When we talk about the SI form of a straight line in the Cartesian plane, the term intercept
refers to the value of a variable at the point where the line crosses the axis for that variable. 
If y is the dependent variable, then we often talk about the y-intercept. That’s what is usually 
meant when we work with the SI form of an equation when graphing it in the xy-plane. Two 
examples are shown in Fig. 15-2.

An intercept can be thought of as an ordered pair where one of the values (the one on the 
axis not being intercepted) is 0. We can plug 0 into a linear equation for one of the variables, 
and solve for the remaining variable to get its intercept. This method can be more convenient 
than rearranging everything into SI form or drawing a graph, but all by itself it doesn’t give us 
any visual reinforcement of the situation.

Putting it together

In Chap. 12, you learned the standard form for a first-degree equation in one variable. If the 
variable is x, the standard form is

ax + b = 0



where a and b are constants. If you substitute y for 0 and then transpose the left and right 
sides, you get an equation for a linear function where y is the dependent variable and x is the 
independent variable:

y = ax + b

As things work out, the constant a is the slope of the graph, and the constant b is the y-intercept. 
Because the slope is usually symbolized by m instead of a, you can write

y = mx + b

This is the classical expression of the SI form for a linear function.

Are you confused?
If the graph of a linear relation is a vertical line, then the slope is undefined, and the relation is not a func-
tion. The graph of a linear function must be a nonvertical line; otherwise it would fail the vertical-line test 
in the worst possible way! Whenever you see a linear relation that simply says x is equal to some constant, 
then you know that relation is not a function of x. Figure 15-3 shows some examples. Note that all the 
lines are vertical; they are parallel to the dependent-variable axis.
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y-intercept is 3

y-intercept is –2 Slope is
negative

Slope is
positive

Figure 15-2  Two examples of y-intercept points for 
straight lines. The line that ramps upward 
as we move to the right has positive slope; 
the line that ramps downward as we move 
to the right has negative slope.
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Here’s a challenge!
Put the following equation into SI form as a linear function of x, and graph it on that basis:

8x + 4y = 12

Solution
We must rearrange this equation to get y all by itself on the left side of the equality symbol, and an 
expression containing only x and one or more constants on the right side. Subtracting 8x from both sides 
gives us

4y = −8x + 12

Dividing each side by 4 puts it into SI form:

 y = (−8x)/4 + 12/4

 = −2x + 3

The slope is −2, and the y-intercept is 3. Figure 15-4 shows the graphing process. We plot the y-intercept 
point on the y axis at the mark for 3 units. That gives us a point with coordinates (0, 3). To plot the line, 
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Figure 15-3  These linear relations are not functions of x.
The slopes of the graphs are undefined, 
because they are all straight lines parallel to 
the y axis.



we must know the coordinates of another point. We can find one by moving horizontally to the right 
by any number of units we want (call it n units), and then moving straight up from there by mn units, 
where m is the slope. We should move far enough to the right so the two points will be well separated. 
That will make it easy to draw the graph accurately. Let’s move to the right from (0, 3) by 3 units. That 
gives us the point (3, 3), shown as an open circle to indicate that it’s not actually part of the graph. Then 
we move straight up by mn = −2 × 3 = −6 units, which is equivalent to moving straight down by 6 units. 
We have now found a second point on the graph. Our new point is 3 units to the right and 6 units below 
the y-intercept point, so its coordinates are (3, −3). We plot this point, and then we connect the two 
points with a solid line to obtain the graph. We extend the line somewhat beyond the points in either 
direction, keeping in mind that the true, complete line (in the mathematical cosmos) extends infinitely 
far in each direction!

Here’s another challenge!
Just as there is a standard form for a first-degree equation in one variable, there’s a standard form for a 
two-variable linear equation. Here it is:

ax + by + c = 0

where x is the independent variable, y is the dependent variable, and a, b, and c are constants. Show how 
this equation can be rearranged into the SI form, expressing y as a function of x (as long as b, the coefficient 
of y, is not equal to 0).
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Figure 15-4  Graph of the equation 8x + 4y = 12. This 
graph can be drawn easily when we morph 
the equation into its SI form y = −2x + 3.
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Solution
Table 15-1 is an S/R derivation of a SI equation from the standard form of a two-variable linear equation. 
Here, the familiar m for slope is replaced by −a /b, and the familiar b for slope is replaced by −c /b. The 
result is in the correct form; that’s the important thing! The coefficient of y cannot equal 0 in the original 
equation; that would cause both the slope and the y-intercept to be undefined. The graph in such a case 
would exist, but it would be a vertical line, so it would not represent a function of x.

Point-Slope Form
Another common way to express a linear function is known as the point-slope form. As the 
name suggests, we can draw the graph of a function if we know the coordinates of any single 
point on the line, and if we also know the slope of the line. Let’s call this the PS form.

The form

Here is the standard PS form for a linear function. Later in this chapter, we’ll figure out how 
this form is derived:

y − y0 = m(x − x0)

where x is the independent variable, y is the dependent variable, m is the slope, and (x0, y0) are 
the coordinates of a known point on the graph.

An example

Suppose we’re told that there’s a linear function whose graph contains the point (−1, 2). We 
are also told that the slope of the graph is 2. The independent variable is x, and the dependent 
variable is y. Our task is to draw a graph of the function.

Let’s begin by assigning x0 = −1 and y0 = 2. When we plug these numbers into the stan-

Table 15-1.  Conversion of a general two variable linear equation to SI form. This 
only works if the constant b (the coefficient of y) is not equal to 0. In this result, the 

slope is equal to −a /b, and the y-intercept is equal to −c /b.

Statements Reasons

ax + by + c = 0 This is the equation we are given
ax + by = −c Subtract c from each side
by = −ax − c Subtract ax from each side
Require that b ≠ 0 We’re about to divide through by b
y = (−ax − c)/b Divide through by b
y = −ax /b − c /b Right-hand distributive law for division over subtraction
y = (−a /b)x − c /b Rearrange to define the coefficient for x
y = (−a /b)x + (−c /b)  Change subtraction to negative addition, putting the

 equation into strict SI form



dard PS equation, we get

y − 2 = 2[x − (−1)]

which simplifies to

y − 2 = 2(x + 1)

We can now find another point on the graph by plugging in a value for x and solving for y. We 
only need one more point to determine the straight line in the Cartesian plane that represents 
this function. Let’s try x = 1. We solve for y in steps:

 y − 2 = 2(1 + 1)
 y − 2 = 2 × 2
 y − 2 = 4
 y = 6

This tells us that (1, 6) represents a point on the graph. We already know that (−1, 2) is on it. 
When we plot these two points on the plane and draw a straight line through them both, we 
get the graph shown in Fig. 15-5.
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Figure 15-5  Graph of a linear function based on the 
knowledge that the point (−1, 2) is on the 
line, and the slope is equal to 2.
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Are you confused?
The PS form of a linear function is actually a generalized version of the SI form. The PS form is handy 
when we don’t know the y-intercept of a graph, but we do know the coordinates of some point in one of 
the quadrants. If we are told only those coordinates and the slope, we can easily write down an equation 
representing the function using the PS form. We can then draw the graph by finding another point using 
that equation, and connecting the two points with a straight line.

Here’s a challenge!
Look again at the general PS form for a linear equation, whose graph has a known point with coordinates 
(x0y0) and a slope m, and where x is the independent variable and y is the dependent variable:

y − y0 = m(x − x0)

Convert this equation into SI form.

Solution
Table 15-2 is an S/R derivation that shows how this can be done.

Equations from Graphs
Let’s derive the SI and PS forms of linear equations by looking at how their graphs behave 
generally. Then we’ll derive a standard form for a linear equation based on two known points.

Known slope and y -intercept

Imagine a line in Cartesian coordinates that has slope m and crosses the y axis at the point 
(0, b), as shown in Fig. 15-6. If we move away from (0, b) on the line, the slope is always equal 
to the difference in the y value divided by the difference in the x value, or Δy /Δx.

Table 15-2 Conversion of a linear equation from PS to SI form. 
Remember that m, x0, and y0 are constants. The y-intercept, called 

b in the classical expression of the SI form, turns out to be the 
quantity ( y0 − mx0).

Statements Reasons

y − y0 = m(x − x0) This is the equation we are given
y − y0 = mx − mx0 Distributive law of multiplication over subtraction
y = mx − mx0 + y0 Add y0 to each side
y = mx + (−mx0) + y0 Change subtraction to negative addition
y = mx + (−mx0 + y0) Grouping of addends
y = mx + (y0 − mx0) Simplify second addend on right side



Suppose we move from (0, b) to some point (x, y) on the line by going Δx units to the 
right and Δy units upward. The x coordinate of the point (x, y) will be 0 + Δx, because we have 
moved Δx units horizontally from a point where x = 0. The y coordinate of the point (x, y) will 
be b + Δy, because we have moved Δy units vertically from a point where y = b.

If we can get an equation that allows us to calculate y in terms of x for the arbitrary point 
(x, y), then we will have demonstrated how y is a function of x. As things turn out, we’ll also 
get the SI form of the equation for the line.

We can express Δy in terms of the slope m and the increment Δx by morphing the formula 
that defines slope. That formula, once again, is

m = Δy /Δx

Multiplying through by Δx, we get

mΔ x = Δy

Now remember that

y = b + Δy

We can substitute mΔx for Δy in this equation, getting

y = b + mΔ x
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–y

y

x
(0,b)

(x,y)
xx = 0 + 

yy = b +

y xm =

Figure 15-6 The SI form of a linear equation can be derived 
from this generic graph.

Equations from Graphs  245



246 Graphs of Linear Relations

But in this situation, Δx is exactly equal to x ! That’s because, by traversing the increment Δx,
we have moved from the y axis (where x = 0) horizontally by x units. Because of this lucky 
coincidence, we can substitute x for Δx in the above equation, getting

y = b + mx

If we want to be picayune, we can reverse the order of the addends to state it as

y = mx + b

Known point and slope

Imagine a line in the Cartesian plane that passes through a point whose coordinates are (x0y0),
where x0 and y0 are known constants. Suppose the line has slope m as shown in Fig. 15-7. 
If we move away from (x0, y0) along the line, the slope is always equal to Δy /Δx.

Let’s go from (x0, y0) to some arbitrary point (x, y) on the line, just as we did when we 
derived the SI equation. The x coordinate of (x, y) will be x0 + Δx, because we have moved 
Δx units horizontally from a point where x = x0. The y coordinate of the point (x, y) will be 
y0 + Δy, because we have moved Δy units vertically from a point where y = y0. Now remember, 
once again, how slope is defined:

m = Δy /Δx
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Figure 15-7 The PS form of a linear equation can be derived 
from this generic graph.



As before, we have

mΔx = Δy

Observe that in Fig. 15-7,

y = y0 + Δy

Let’s substitute mΔx for Δy here. That gives us

y = y0 + mΔx

Now we can see from Fig. 15-7 that

x = x0 + Δx

Subtracting x0 from each side, we obtain

x − x0 = Δx

Substituting (x − x0) for Δx in the equation for y in terms of y0 and mΔx, we get

y = y0 + m(x − x0)

Subtracting y0 from each side gets us to the PS form

y − y0 = m(x − x0)

Are you confused?
The preceding two examples show lines with positive slope. There’s good reason to wonder, “What 
happens when the slope of the line is negative?” The answer is, “Nothing special, as long as we’re 
careful.”

Think of what happens when we move to the right in the Cartesian plane. If the slope of a line is posi-
tive, then Δy is always positive as we move to the right. If the slope is negative, then Δy is always negative 
as we move to the right. Either way, we add Δy when we move to the right. If we keep adding a positive Δy,
we go higher and higher. If we keep adding a negative Δy, we go lower and lower. In this context, “higher” 
means “in the positive y direction,” and “lower” means “in the negative y direction.”

Similar sign-related confusion can occur when we work with the SI form of a linear equation. The 
standard form, once again, is

y = mx + b

This equation has a plus sign whether b is positive or negative. If m = 3 and b = −2, for example,

y = 3x + (−2)
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which is the same as

y = 3x − 2

When we work with the PS form, we come across another “sign-rigid” situation, but with minus signs 
instead of a plus sign! The general form of the equation is always

y − y0 = m(x − x0)

It contains two minus signs, and pays no heed to whether y0 or x0 happen to be positive or negative. For 
example, if m = 5, x0 = −4, and y0 = −8, then

y − (−8) = 5[x − (−4)]

which is the same as

y + 8 = 5(x + 4)

We must always pay close attention to signs when working with the standard forms of linear equations. It’s 
easy to get them wrong! If we see, for example,

y = 2x − 4

then the y-intercept is b = −4. If we see

y − 3 = −4(x + 5)

then the graph contains a point whose coordinates are (x0, y0) = (−5, 3).

Here’s a challenge!
Imagine a straight line that passes through two points whose Cartesian coordinates are (x1, y1) and (x2, y2).
Derive an equation for this line in terms of the independent variable x and the dependent variable y. Call 
this the two-point form of a linear equation. Consider x1, x2, y1, and y2 to be constants.

Solution
Figure 15-8 shows a generic example of this situation. The line has a negative slope, but that doesn’t make 
any difference in the way things will turn out. Let’s start by calculating the slope of the line. It is Δy /Δx.
Let’s move to the right, from the point (x1, y1) to the point (x2, y2). Then

Δy = y2 − y1

and

Δx = x2 − x1

The slope is

 m = Δy /Δx

= (y2 − y1)/(x2 − x1)



Now let’s use the PS form to derive an equation for the line. We have two points to choose from. Either point 
will work. Let’s use (x1, y1). We can substitute x1 for x0, and y1 for y0 in the classical PS equation to get

y − y1 = m(x − x1)

Substituting (y2 − y1)/(x2 − x1) for m, we obtain

y − y1 = [(y2 − y1)/(x2 − x1)] (x − x1)

which can be rearranged to

y − y1 = (x − x1)(y2 − y1)/(x2 − x1)

This is a mess, but it’s the best we can do when we aren’t given the slope directly. The good news is that 
most of the values in this equation are constants. When the coordinates for the points are given as numbers, 
we can plug them in and get the equation by means of straightforward arithmetic.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!
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Figure 15-8  A two-point form of a linear equation can be 
derived from this generic graph.
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 1.  Imagine two points P and Q plotted on the Cartesian plane, where the independent 
variable is u and the dependent variable is v. Point P is defined by (−1, −6), and Q is 
defined (2, 2). What is the slope of the line connecting these two points if we go in the 
direction from P to Q ?

 2.  Calculate the slope of the line in Prob. 1 on the basis of going in the direction from Q
to P, showing that the slope doesn’t depend on which way we move along the line.

 3.  Derive an equation of the line described in Probs. 1 and 2 in PS form.

 4.  Derive an equation of the line described in Probs. 1, 2, and 3 in SI form.

 5.  Sketch a graph of the linear equation discussed in Probs. 1 through 4 using the simplest 
possible method. Label the slope as m and the v-intercept as b, and indicate their values.

 6.  Suppose we see two equations where s is the independent variable and t is the 
dependent variable:

t = s + 5 

  and

t = 5 − s

   Someone says, “When graphed, these equations will produce lines oriented at a 90° 
angle with respect to each other.” How can she say this without drawing the graphs? 
Under what circumstances will she be right? Under what circumstances will she be 
wrong?

 7.  Our advisor, who introduced herself in Prob. 6, goes on to make the claim, “The two 
lines we talked about will intersect somewhere on the t axis.” She’s right! What is the 
exact point of intersection?

 8.  Graph the two lines we discussed in Probs. 6 and 7, and label the point of intersection.

 9.  Find an equation for the line in Cartesian (x, y) coordinates that passes through the 
two points (2, 8) and (0, −4). Use the results of the last challenge. Put the equation 
into PS form.

 10.  Find an equation for the line in Cartesian (x, y) coordinates that passes through the two 
points (−6, −10) and (6, −12). Use the results of the last challenge. Put the equation 
into SI form.
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CHAPTER

1 6

Two-by-Two Linear Systems

In Chap. 12, we saw how we can solve first-degree equations in one variable. Now it’s time to 
work with pairs of linear equations in two variables, also known as two-by-two linear systems.
Solving a linear system involves reducing it to first-degree equations, one for each of the 
variables.

Morph and Mix
When we want to solve a two-by-two linear system, we can put both equations into slope-
intercept (SI) form. Then we can take the right sides of the resulting equations and mix them 
to get a first-degree equation in one variable. We can solve that equation, and finally plug the 
result into either of the SI equations to solve for the other variable.

Morph both equations into SI form

Suppose we are told to find the values of x and y such that both of the following equations 
are true:

8x + 4y = 16

and

7x − y = 41

Let’s put these equations into SI form. In the first case, we start with

8x + 4y = 16

Subtracting 8x from each side gives us

4y = −8x + 16

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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Dividing through by 4, we get

y = −2x + 4

Now for the second equation. We begin with

7x − y = 41

Subtracting 7x from each side, we get

−y = −7x + 41

Multiplying through by −1 gives us

y = 7x − 41

Mix the right sides and solve

Now let’s put the right side of the first SI equation on the left side of an equals sign, and the 
right side of the second SI equation on the right side of the same equals sign. This produces a 
first-degree equation in one variable:

−2x + 4 = 7x − 41

Now let’s solve this for x. When we subtract 7x from each side, we get

−9x + 4 = −41

We can subtract 4 from each side to obtain

−9x = −45

Finally, we divide through by −9 to get

x = 5

Substitute and solve again

To solve for y, we can take either of the SI equations and plug in 5 for x. Let’s use the first one. 
That gives us

 y = −2 × 5 + 4
 = −10 + 4
 = −6

We have used algebra to find that x = 5 and y = −6. We can express this as the ordered pair 
(5,−6) if we imagine x as the independent variable and y as the dependent variable.



Two versions of the SI form

In a two-by-two system, it often doesn’t matter which variable we consider independent and 
which one we consider dependent. But a true SI equation always has the dependent variable 
alone on the left side of the equals sign, and the independent variable on the right side along 
with constants that represent characteristics of a graph. For example, if we see the equation

x − y = 10

then we can say that both of the following are SI equivalents of it:

y = x − 10

and

x = y + 10

In the first case, we treat y as the dependent variable. In the second case, we treat x as the 
dependent variable.

Are you confused?
Once you’ve solved a two-by-two linear system (or think you have), you should consider your solutions 
tentative until you’ve plugged them into both of the original equations and worked out the arithmetic to 
be sure that they’re correct. The solution to the system originally stated on page 251 appears to be x = 5 
and y = −6. Is it, really? Check the first original equation:

 8x + 4y = 16

 8 × 5 + 4 × (−6) = 16

 40 − 24 = 16

 16 = 16

That checks out fine! Now for the second original equation:

 7x − y = 41

 7 × 5 − (−6) = 41

 35 + 6 = 41

 41 = 41

It works out here, too! You can now be confident that the solutions are right.

Here’s a challenge!
While flying directly into a high-altitude wind, an airplane has a groundspeed (speed measured with respect 
to the earth) of 750 kilometers per hour (km/h). When flying right along with that same wind at the same 
airspeed (speed measured with respect to the surrounding air), the plane has a groundspeed of 990 km/h. 
What is the airspeed of the plane? What is the speed of the wind relative to the earth?
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Solution
Let x represent the airspeed of the plane, and let y represent the speed of the wind, both in kilometers per 
hour. When the plane flies against the wind, the wind takes away from its groundspeed. Therefore

x − y = 750

Let’s put this equation into SI form. Subtracting x from each side gives us

−y = −x + 750

Multiplying through by −1 tells us that

y = x − 750

When the plane flies with the wind, the wind adds to its groundspeed. That means

x + y = 990

To morph this into SI form, we can subtract x from each side, getting

y = −x + 990

Now let’s mix the right sides of these two SI equations:

x − 750 = −x + 990

When we add 750 to each side, we obtain

x = −x + 1,740

We can add x to each side to get

2x = 1,740

Finally we divide through by 2, discovering that

x = 870

Now we know that the airspeed of the plane is 870 km/h. Let’s plug this value into one of the SI equations. 
We can use the first one, getting

 y = x − 750

 = 870 − 750

 = 120

This tells us that the wind is blowing at 120 km/h with respect to the earth.
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These values should be checked by plugging them into both of the original equations to be sure they’re 
correct. Here we go:

 x + y = 990

 870 + 120 = 990

 990 = 990

and

 x − y = 750

 870 − 120 = 750

 750 = 750

We can now state these solutions with confidence, at least until the wind changes or the airplane alters its 
cruising speed!

Double Elimination
There’s another way to solve two-by-two systems of linear equations, which I like to call 
double elimination. It’s also called the addition method. We can morph one or both equations 
so that when we add them in their entirety, one of the variables disappears. That allows us to 
solve for the other variable. We can then do the same thing to make the other variable disap-
pear, and solve for the one!

Get in the same form

Let’s solve the following two-by-two linear system using double elimination, first for u (by 
eliminating t) and then for t (by eliminating u):

2t + 5u = −7

and

u = 4t − 3

Before we go any farther, we must get both equations in the same form. Let’s use the form 
of the first equation. The second equation can be morphed into that form by subtracting 4t
from each side, getting

−4t + u = −3

Eliminate the first variable

Our first objective is to make t vanish when we add multiples of the equations. We can mul-
tiply the first original equation through by 2, getting

4t + 10u = −14
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Adding the two morphed equations in their entirety causes the variable t to vanish:

 −4t + u = −3

 4t + 10u = −14

 11u = −17

When we divide this result through by 11, we see that u = −17/11.

Eliminate the second variable

Now let’s look at the first original equation and the second morphed equation again. 
They are

2t + 5u = −7

and

−4t + u = −3

Our goal this time is to find a way to make u vanish when we add multiples of the equations. 
Let’s multiply the second equation through by −5. That morphs it into

20t − 5u = 15

We can add the two equations in their entirety:

 2t + 5u = −7

 20t − 5u = 15

 22t = 8

This is easily solved to get t = 8/22, which reduces to 4/11. We can now state the solution to 
this system as an ordered pair (t,u) = (4/11,−17/11).

Are you confused?
Let’s plug these results into the original equations to be sure they’re accurate. The first equation figures 
out this way:

 2t + 5u = −7

 2 × 4/11 + 5 × (−17/11) = −7

 8/11 + (−85/11) = −7

 −77/11 = −7

 −7 = −7



That works! The second original equation comes out like this:

 u = 4t − 3

 −17/11 = 4 × 4/11 − 3

 −17/11 = 16/11 − 3

 −17/11 = 16/11 − 33/11

 −17/11 = (16 − 33)/11

 −17/11 = −17/11

That checks out as well. We can be confident that we’ve found the correct solution to the original two-
by-two linear system.

Here’s a challenge!
Derive a general formula using double elimination that solves the following two-by-two linear system for 
the variables x and y in terms of the constants a through f. Here are the equations:

ax + by = c

and

dx + ey = f

Solution
First, let’s cause x to disappear so we can solve for y. To do this, we must get coefficients for x that have the 
same absolute value but opposite sign in the two equations. Let’s multiply the first equation through by d, and 
multiply the second equation through by −a. When we add the resulting equations in their entirety, we get

 dax + dby = dc

 −adx − aey = −af

 dby − aey = dc − af

The terms dax and −adx are additive inverses, so when we add them, they vanish. Now, we can invoke the 
distributive law “backward” in the left side of this result to get

(db − ae)y = dc − af

We can solve for y if we divide through by (db − ae), assuming that (db − ae) ≠ 0:

y = (dc − af   )/(db − ae)

Now let’s cause y to disappear so we can solve for x. We multiply the first original equation through by e, and 
multiply the second equation through by −b. When we add the resulting equations in their entirety, we get

 eax + eby = ec

 −bdx − bey = −bf

 eax − bdx = ec − bf
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The terms eby and −bey are additive inverses, so they disappear from the sum. Next, we can apply the 
distributive law “backward” in the left side, obtaining

(ea − bd )x = ec − bf

We can solve for x if we divide through by (ea − bd ), assuming that (ea − bd ) ≠ 0:

x = (ec − bf   )/(ea − bd )

Are you astute?
Have you noticed that the “taboos” in the above derivations are actually two different ways of saying the 
same thing? They’re stated like this:

(db − ae) ≠ 0

and

(ea − bd ) ≠ 0

Both of these inequalities are equivalent to the statement ae ≠ bd. Can you see why? What do you think 
will happen if a linear system has coefficients in the above form such that ae = bd ? You’ll get a chance to 
explore a situation like that in exercises 5, 6, and 7 at the end of this chapter!

Rename and Replace
A two-by-two linear system can be unraveled by renaming one variable in terms of the other, 
and then creating a single-variable, first-degree equation from the result. We solve that equa-
tion, and then plug the number into a strategic spot to solve for the other variable. This pro-
cess is usually called the substitution method. I like to call it rename and replace.

Rename one variable

When we want to solve a two-by-two linear system by rename-and-replace, we begin by mor-
phing one of the equations into SI form. Consider this pair of equations:

−7v + w + 10 = 0

and

4v + 8w = −40

We can take the first equation and add 7v to each side, getting

w + 10 = 7v



Then we can subtract 10 from each side to obtain this SI equation with w playing the role of 
the dependent variable:

w = 7v − 10

Make a first-degree equation

The second step involves substituting our “new name” for w into the equation we haven’t 
touched yet, which in this case is the second original. That gives us

4v + 8(7v − 10) = −40

The distributive law of multiplication over subtraction can be applied to the second addend 
on the left side of the equals sign to get

4v + 56v − 80 = −40

Summing the first two addends in the left side of this equation gives us

60v − 80 = −40

Adding 80 to each side, we obtain

60v = 40

This tells us that v = 40/60 = 2/3.

Plug the number into the best place

Now that we have solved for one of the variables, we can replace the resolved unknown with 
its solution in any relevant equation containing both variables. The simplest approach is to use 
is the SI equation we derived in the first step:

w = 7v − 10

When we replace v by 2/3 here, we get

w = 7 × 2/3 − 10

Taking the product on the right side of the equals sign, and changing 10 into 30/3 to obtain 
a common denominator, we come up with

w = 14/3 − 30/3

Now it’s a matter of mere arithmetic:

 w = (14 − 30)/3
 = −16/3

We’ve derived the solution to this system: v = 2/3 and w = −16/3.
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Are you confused?
As always, we had better check our work to be sure the solutions we obtained satisfy both of the original 
equations. Here’s the first check:

 −7v + w + 10 = 0

 −7 × (2/3) + (−16/3) + 10 = 0

 −14/3 − 16/3 + 10 = 0

 −30/3 + 10 = 0

 −10 + 10 = 0

 0 = 0

All right! Here’s the second check:

 4v + 8w = −40

 4 × 2/3 + 8 × (−16/3) = −40

 8/3 − 128/3 = −40

 (8 − 128)/3 = −40

 −120/3 = −40

 −40 = −40

All right again! Our solutions are correct.

Here’s a challenge!
Solve the following pair of equations as a two-by-two linear system using the substitution method:

3x − πy = −1

and

−8x + 2y = 4

This process is going to be messy! If we remember that π is a plain old real number, it won’t be too bad. 
The signs will be tricky, though.

Solution
Let’s tackle the second equation and get it into a form that expresses y in terms of x. First, we can add 8x
to each side, getting

2y = 8x + 4

When we divide through by 2, we get

y = 4x + 2



Now we can substitute (4x + 2) for y in the first original equation, obtaining

3x − π(4x + 2) = −1

When we apply the distributive law on the left side of the equals sign, we get

3x − (4πx + 2π) = −1

This is the equivalent of

3x + [−1(4πx + 2π)] = −1

which simplifies to

3x − 4πx − 2π = −1

When we add 2π to each side, we get

3x − 4πx = −1 + 2π

We can use the distributive law “backward” to morph the left side of this equation, obtaining

(3 − 4π)x = −1 + 2π

Now we can divide through by (3 − 4π) to get

x = (−1 + 2π)/(3 − 4π)

It’s a mess, all right! But we’ve found a real number that’s equal to x. We can plug this number into the SI 
equation we derived earlier, getting

 y = 4[(−1 + 2π)/(3 − 4π)] + 2

 = (−4 + 8π)/(3 − 4π) + 2

Believe it or not, this can be simplified. But we must take a step back, and then we can take two steps for-
ward. Let’s “complexify” the number 2 and write it as twice the denominator in the fraction above, divided 
by that denominator. The idea is to get a common denominator, add some fractions, and get a simpler 
expression as a result. In mathematical terms,

2 = 2(3 − 4π)/(3 − 4π)

It takes some intuition to see, in advance, how a scheme like this will work. (With practice, you’ll develop 
this “sixth sense.”) Our solution for y can now be rewritten as

y = (−4 + 8π)/(3 − 4π) + 2(3 − 4π)/(3 − 4π)

This gives us a sum of two fractions with the common denominator (3 − 4π). Therefore:

y = [(−4 + 8π) + 2(3 − 4π)]/(3 − 4π)
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Applying the distributive law, we get

y = (−4 + 8π + 6 − 8π)/(3 − 4π)

When we add up the terms in the numerator here, we get our reward:

y = 2/(3 − 4π)

We’ve arrived at our solutions! They are:

x = (−1 + 2π)/(3 − 4π)

and

y = 2/(3 − 4π)

How about some extra credit?
Plug the above numbers into the original equations for x and y, and verify that the answers we got are 
correct. You’re on your own! Here’s a hint: (3 − 4π) divided by itself is equal to 1.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  The sum of two numbers is 44. Their difference is 10. What are the two numbers? Use 
the morph-and-mix method.

 2.  The sum of two numbers is 100. One of them is 6 times the other. What are the two 
numbers? Use the morph-and-mix method.

 3.  Imagine that you and I are traveling in a car on a level highway at constant speed. I’m 
the driver. There are no other vehicles or living things in sight. You throw a baseball 
straight out in front of the car. The ball strikes the pavement at 135 miles per hour (mi/h). 
Then you throw another baseball directly backward, exactly as hard as the first one. The 
second ball hits the highway, moving opposite to the direction of the car, at 15 mi/h. 
(The ball is not only moving backward relative to the car; it’s also moving backward 
relative to the pavement!) How fast am I driving? How fast do you hurl the baseballs 
relative to the car? Forget about the possible effects of wind and gravity. Here’s a hint: 
Feel free to draw diagrams.

 4.  The sum of two numbers is −83. Their difference is 13. What are the two numbers? 
Use double elimination. 



 5.  When we attempt to solve the following two-by-two linear system, we will fail. Try it 
using the double-elimination method and see what happens. Here are the equations:

2x + y = 3

  and

6x + 3y = 12

   Is something wrong with one or both of these equations? Why can’t we solve this 
system?

 6.  Put the two original equations from Prob. 5 into SI form. What does this tell us about 
their graphs? Would drawing the graphs provide any clues about why the system can’t 
be solved?

 7.  Look again at the general derivation for solving a two-by-two system by double 
elimination. Remember the “taboo” concerning the constants. Does this have anything 
to do with why the system described in Probs. 5 and 6 can’t be solved? Plug in the 
numbers and see what happens.

 8.  Solve the two-by-two linear system given in Prob. 1 using the rename-and-replace 
(substitution) method.

 9.  Solve the two-by-two linear system given in Prob. 4 using the rename-and-replace 
method.

 10.  Attempt to solve the following pair of equations as a two-by-two linear system by 
substitution. You’ll get a meaningless result. Why?

s = 2r − 3

  and

−10r + 5s + 15 = 0
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CHAPTER

1 7

Two-by-Two Linear Graphs

Let’s graph the two-by-two linear systems we looked at in Chap. 16. This will give you a 
chance to see what’s going on when a system has a single solution (is consistent), has no solution 
(is inconsistent), or has infinitely many solutions (is redundant or dependent). Any linear system 
must fall into one of these three categories.

We Morphed, We Mixed, We Can Graph
In the preceding chapter, we used the morph-and-mix method to solve the following linear 
system for x and y :

8x + 4y = 16

and

7x − y = 41

We found that x = 5 and y = −6. Now we’ll illustrate this situation graphically, calling x the 
independent variable and y the dependent variable.

Find two points for each line

When we want to physically draw a graph of a line on graph paper, we must know the 
coordinates of two points that lie on that line. We can then connect the two points, imag-
ining the line extending forever in either direction. When we want to graph a two-by-two 
linear system, the most efficient approach is to find the points where the two lines cross 
one of the axes, and then also find the point where the two lines intersect (if there is such 
a point).
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When we morphed the above two equations before mixing them on our way to a solution, 
we put them into SI form. Those SI equations, once again, are

y = −2x + 4

and

y = 7x − 41

The y-intercepts are at 4 and −41. The ordered pairs for those points are (0,4) and (0,−41).
The lines intersect at the solution point where x = 5 and y = −6, corresponding to the ordered 
pair (5,−6).

Connect the points

We have determined that one line passes through the points (0, 4) and (5, −6), while the other 
line passes through the points (0, −41) and (5, −6). Figure 17-1 shows the graph of this system 
on the Cartesian plane.

Are you confused?
In Fig. 17-1, two of the points we found are close to the origin, while the third point is far away. It’s difficult 
to plot points accurately when they’re so diverse, because the increments must be large (in this case 10 units 
per division). It’s also difficult to draw a line based on two points that are close together. If we want to 

We Morphed, We Mixed, We Can Graph  265

x

y

(0,–41)

(0,4)

8x + 4y = 16

7x – y = 41

Solution
= (5,–6)

(30,–56)

Each axis
increment
is 10 units

Figure 17-1  Graphs of 8x + 4y = 16 and 7x − y = 41 
as a two-by-two linear system where 
the independent variable is x and the 
dependent variable is y. On both axes, 
each increment represents 10 units.
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precisely draw the line through two points that are close together, we can find a third point farther out on 
that line and use it. For example, in the equation 8x + 4y = 16 for the line through (0, 4) and (5, −6), we 
can plug in x = 30 and easily solve for y using the SI form:

 y = −2x + 4

 = −2 × 30 + 4

 = −60 + 4

 = −56

That tells us that the point (30, −56) is on the line. It is shown as an open circle in Fig. 17-1. This point 
is far enough away from (0, 4) so we can easily draw the line.

Here’s a challenge!
Revisit the airplane challenge from Chap. 16. While flying straight into the wind, an airplane has a 
groundspeed of 750 km/h. When flying straight downwind at the same airspeed, the plane has a ground-
speed of 990 km/h. Let x represent the airspeed of the plane, and let y represent the speed of the wind, 
both in kilometers per hour. Then

x − y = 750

and

x + y = 990

Graph these two equations, showing that the airspeed of the plane is 870 km/h, and the wind is blowing 
at 120 km/h.

Solution
Let’s write down the SI forms of the equations that we derived before we mixed them. They are

y = x − 750

and

y = −x + 990

The y-intercepts are −750 and 990, so we can plot the points (0, −750) and (0, 990) on a Cartesian 
plane where x is the independent variable and y is the dependent variable. The solution we obtained 
in Chap. 16 was x = 870 and y = 120, giving us another point with the ordered pair (870,120). 
Figure 17-2 shows these three points and the lines through them. That’s how this two-by-two linear 
system looks when graphed. The reference points we found are well separated, so the lines are easy 
to draw.



We Added, We Eliminated, We Can Graph
In Chap. 16, we solved the following two-by-two linear system for t and u using double 
elimination:

2t + 5u = −7

and

u = 4t − 3

We found that t = 4/11 and u = −17/11. Let’s graph this situation, calling t the independent 
variable and u the dependent variable.

Find two points for each line

As before, let’s find the u-intercepts and the solution, using these points as the basis for drawing 
our lines. The second equation is already in SI form. The u-intercept for its graph is −3, so we 
know that (0, −3) is on the line. We have to work on the first equation a little. We start with

2t + 5u = −7

x

y

(0,990)

(0,–750)

x – y = 750

Each axis
increment
is 200 units

x + y = 990

Solution = (870,120)

Figure 17-2  Graphs of x − y = 750 and x + y = 990 
as a two-by-two linear system where 
the independent variable is x and the 
dependent variable is y. On both axes, 
each increment represents 200 units.
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When we subtract 2t from each side, we get

5u = −2t − 7

We can divide through by 5 to obtain

u = (−2/5)t − 7/5

The u-intercept for this line is −7/5, so the point (0, −7/5) is on it. Note that the ordered pairs 
here are always of the form (t,u), because it’s customary to list the independent variable first and 
the dependent variable after it. In Chap. 16, we found that the solution for the linear system 
was t = 4/11 and u = −17/11. Therefore, the point (4/11, −17/11) is where the lines intersect.

Connect the points

We have the points we need to graph the lines. Our first line passes through (0, −3) and 
(4/11, −17/11). The second line goes through (0, −7/5) and (4/11, −17/11). Unfortunately, 
two of these points are so close together that it’s hard to draw the line through them precisely, 
as can be seen by looking at the graph of this system (Fig. 17-3).

t

u

(0,–7/5)

(0,–3)

Solution =
(4/11,–17/11)2t + 5u = –7

(3,–13/5)

u = 4t – 3

(1,1)

Each axis
increment
is 1/2 unit

Figure 17-3  Graphs of 2t + 5u = −7 and u = 4t − 3 
as a two-by-two linear system where 
the independent variable is t and the 
dependent variable is u. On both axes, 
each increment represents 1/2 unit.



Let’s find another point on each line to make our line-drawing task easier. If we plug in 
t = 3 to the SI version of the first equation, we get

 u = (−2/5)t − 7/5

 = (−2/5) × 3 − 7/5

 = −6/5 − 7/5

 = −13/5

That gives us the point (3, −13/5), shown as a small open circle on the line for the first equation. 
If we plug in t = 1 to the second equation, we get

 u = 4t − 3

 = 4 × 1 − 3

 = 4 − 3

 = 1

That gives us the point (1, 1), shown as a small open circle on the line for the second equation.

Are you confused?
When we want to find well-spaced points to draw lines in situations like this, a little common sense is a 
big help. We don’t want any of the points to land off the scale on either axis, but we have to get them far 
enough away from the other points so we can easily draw the lines. The calculations are usually simple if 
we use integers for the “plug-ins.”

Here’s a challenge!
Draw a graph of the above system with the variables transposed. That is, make u the independent variable 
and t the dependent variable.

Solution
Let’s tackle this problem from scratch. To begin, we must get the two original equations into SI form with 
t as the dependent variable. That will make it easy to find the t-intercepts. Then we’ll make up a coordi-
nate system with a horizontal u axis and a vertical t axis and plot the points. Finally, we’ll draw the lines 
through the points.

Here are the original equations, each followed by a step-by-step manipulation to get it into SI form 
with t as the dependent variable. By now, you can figure out the reasoning behind each step, so we don’t 
have to drag ourselves through the justifications!

 2t + 5u = −7

 2t = −5u − 7

 t = (−5/2)u − 7/2
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and

 u = 4t − 3

 u + 3 = 4t

 4t = u + 3

 t = (1/4)u + 3/4

Now we know that the t-intercepts are −7/2 and 3/4, so we can plot the points corresponding to the 
ordered pairs (0,−7/2) and (0,3/4). The solution is still t = 4/11 and u = −17/11, but when we write 
this as an ordered pair, it must be of the form (u,t), so we plot the intersection point as (−17/11, 4/11). 
Figure 17-4 is a Cartesian graph of this situation. We’ve extended the negative (downward) t axis so we can 
plot the t-intercept for the first line and have a little extra room to extend the line past the point.

t

u

Each axis
increment
is 1/2 unit

Solution =
(–17/11,4/11)

(0,–7/2)

(0,3/4)

u = 4t – 3 

t = (1/4)u + 3/4

2t + 5u = –7 

t = (–5/2)u – 7/2

Figure 17-4  Graphs of 2t + 5u = −7 and u = 4t − 3 
as a two-by-two linear system where 
the independent variable is u and the 
dependent variable is t. On both axes, 
each increment represents 1/2 unit. The 
SI forms of the equations are shown below 
the originals.



We Renamed, We Replaced, We Can Graph
In Chap. 16, we solved the following two-by-two linear system for v and w using the rename-
and-replace scheme, also called the substitution method:

−7v + w + 10 = 0

and

4v + 8w = −40

We found that v = 2/3 and w = −16/3. Let’s graph this system, calling v the independent vari-
able and w the dependent variable.

Find two points for each line

Our first step is to get both of the original equations into SI form with w as the dependent 
variable. For the first equation:

 −7v + w + 10 = 0

 w + 10 = 7v

 w = 7v − 10

This tells us that the w-intercept for one of the lines is −10, so we can plot the point (0, −10)
on the Cartesian plane. For the second equation:

 4v + 8w = −40

 8w = −4v − 40

 w = (−4/8)v − 40/8

 w = (−1/2)v − 5

The w-intercept for the other line is −5, so we can plot (0, −5) on the coordinate plane. We 
know that the lines intersect at the solution point where v = 2/3 and w = −16/3, so we can 
plot (2/3, −16/3). These three known points are plotted in Fig. 17-5.

Connect the points

One line passes through (0, −10) and (2/3, −16/3). The other line passes through (0, −5) and 
(2/3, −16/3). The points here are badly “bunched up.” Let’s find new points on both lines so 
we can obtain accurate graphs. Look again at the SI equation

w = 7v − 10

The slope of the line is 7. It ramps steeply upward as we move to the right. If we go 1 unit to 
the right, for example, we’ll go 7 units upward. If we go 2 units to the right, we’ll go 14 units 
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upward. How about 3 units to the right? Will the w value go off the scale? Let’s plug in v = 3 
and see what we get:

 w = 7 × 3 − 10

 = 21 − 10

 = 11

It’s still in the field of view, so we can plot (3, 11) on the plane as a small open circle, and draw 
the line for the first equation through it and (0, −10).

There’s no doubt that we need to find a more distant point on the line for the second 
equation. In SI form, that equation is

w = (−1/2)v − 5

so the slope is −1/2. Knowing this and the w-intercept, we can get a good idea of the position 
and orientation of the line. It passes through the point (0, −5), ramps gradually downward as 

v

w

(0,–10)

(0,–5)

Solution =
(2/3,–16/3)

(–12,1)

(3,11)

–7v + w + 10 = 0 

w = 7v – 10

4v + 8w = –40 

w = (–1/2)v – 5

Each axis
increment
is 2 units

Figure 17-5  Graphs of −7v + w + 10 = 0 and 
4v + 8w = −40 as a two-by-two linear 
system where the independent variable is v
and the dependent variable is w. On both 
axes, each increment represents 2 units. 
The SI forms of the equations are shown 
below the originals.



we move to the right, and ramps gradually upward as we move to the left. Let’s plug in v = −12
and calculate:

 w = (−1/2) × (−12) − 5
 = 6 − 5
 = 1

This is in the field of view, so we can plot the point (−12, 1) as a small open circle, and draw 
the line for the second equation through it and (0, −5).

Are you confused?
What happens when one of the lines in a graph has an undefined slope? How can you solve and graph a 
linear system such as this, for example?

y = 2x − 2

and

x = 3

You can’t reduce the second equation to SI form. Its graph is a vertical line passing through (3, 0). The 
first equation has a slope of 2. Because this sloping line extends forever both ways, upward and to the right 
as well as downward and to the left, it must cross the vertical line x = 3, which extends forever straight 
upward and straight downward, at some point. This is a perfectly decent two-by-two linear system. For 
extra credit, you can solve it and graph it.

Here’s a trick!
Look again at the system we graphed in Fig. 17-5. The original two equations are:

−7v + w + 10 = 0

and

4v + 8w = −40

Suppose we want to draw a graph of this system with w as the independent variable and v as the dependent 
variable. Instead of deriving the SI versions all over again with the variables reversed, we can do a trick with 
the coordinate system and the lines drawn on it.

For a minute, imagine Fig. 17-5 as an unbreakable unit with the axes, points, and lines “all glued 
together.” The positive v axis goes toward the right and the positive w axis goes upward. Now think: How 
can we morph this figure so the positive w axis goes toward the right and the positive v axis goes upward? 
If we can do that, we’ll end up with a graph of the two-by-two linear system with w as the independent 
variable and v as the dependent variable.

Actually, this process takes only three steps. We rotate the drawing in Fig. 17-5 by 90° (one-quarter 
of a turn) counterclockwise. Then we mirror the drawing left-to-right. Finally, we relabel the points by 
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transposing the numbers in the ordered pairs. Once we’ve done these three things, we have a graph of the 
two-by-two system with the variables transposed. Figure 17-6 shows the result.

Are you astute?
Do you notice something familiar about the transformation we just performed, as if we’ve done it before? 
We have! These maneuvers are the equivalent of mirroring the whole system along the axis correspond-
ing to the line where the values of the independent variable and the values of the dependent variable are 
identical. (In this case, that’s the line w = v.) That transformation produces the graph of the inverse of a 
relation, as you learned in Chap. 14.

Look at the SI versions of the equations we graphed in Fig. 17-5. For reference, here they are again:

w = 7v − 10

and

w = (−1/2)v − 5

v

w

Each axis
increment
is 2 units

(11,3)

(–5,0)

Solution =
(–16/3,2/3)

(–10,0)

(1,–12)

–7v + w + 10 = 0

4v + 8w = –40

Figure 17-6  Graphs of −7v + w + 10 = 0 and 
4v + 8w = −40 as a two-by-two linear 
system where the independent variable is w
and the dependent variable is v. This graph 
was obtained by rotating Fig. 17-5 by 90° 
counterclockwise, mirroring it right-to-left, 
and relabeling the points.



These are both functions of v. If we put these equations into SI form with v rather than w as the dependent 
variable, we obtain the inverse relations. Here are the manipulations, starting with the original equations:

 −7v + w + 10 = 0

 −7v + 10 = −w

 −7v = −w − 10

 7v = w + 10

 v = (1/7)w + 10/7

and

 4v + 8w = −40

 4v = −8w − 40

 v = (−8/4)w − 40/4

 v = −2w − 10

These inverse relations are both functions of w. Can you see why?

We Couldn’t Solve, but We Can Graph
In exercises 5, 6, and 7 at the end of Chap. 16, we scrutinized a two-by-two linear system. We 
could not solve it. Here’s the pair of equations:

2x + y = 3

and

6x + 3y = 12

Let’s graph these equations. This will help us see why no ordered pair (x,y) satisfies them as a 
system.

Find two points for each line

If we consider x as the independent variable and y as the dependent variable, then the SI version 
of the first equation is

y = −2x + 3

and the SI version of the second equation is

y = −2x + 4

The y-intercepts are 3 and 4, respectively. That means the point (0, 3) lies on the line for the 
first equation, and the point (0, 4) lies on the line for the second equation.
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When taken together as a two-by-two linear system, these equations have no common 
solution. That means their graphs do not intersect, so we can’t use their point of intersec-
tion as a graph-plotting aid. But there’s another way. Both lines have slopes of −2. If we 
move n units to the right along either line (where n is any number), we must move 2n units 
downward to stay on the line. Let’s move to the right by 4 units along each line. That means 
we must go downward by 8 units. Starting at (0, 3), we’ll end up at (4, −5). Starting at (0, 4), 
we’ll end up at (4, −4).

Connect the points

Figure 17-7 shows the four points we’ve found, and the two lines connecting them. Note that 
the lines are parallel, so they have no intersection point. These two lines, taken together, form 
the graph of the two-by-two linear system represented by the inconsistent equations

2x + y = 3

and

6x + 3y = 12

x

y

(0,3)

(0,4)

(4,–5)

(4,–4)

2x + y = 3 

y = –2x + 3

6x + 3y = 12 

y = –2x + 4

Each axis
increment
is 1 unit

Figure 17-7  Graphs of 2x + y = 3 and 6x + 3y = 12 
as a two-by-two linear system where the 
independent variable is x and the dependent 
variable is y. The lines are parallel and 
distinct. On both axes, each increment 
represents 1 unit. The SI forms of the 
equations are shown below the originals.



Are you confused?
Suppose the graphs of a two-by-two linear system show up as parallel, vertical lines, both with undefined 
slope. If you call x the independent variable and y the dependent variable, then neither of the equations 
is a function of x, although they are both relations between x and y. This sort of system can always be 
reduced to the form

x = a

and

x = b

where a and b are constants, and a ≠ b.
If the graphs of a two-by-two linear system show up as parallel, horizontal lines in the same coordinate 

system, then they both have slopes of 0, and they both represent functions. Such a system can always be 
reduced to the form

y = c

and

y = d

where c and d are constants, and c ≠ d.

Here’s a challenge!
In exercise 10 at the end of Chap. 16, we tried to solve the following pair of equations as a linear system 
by substitution, but failed when we got the meaningless result 0 = 0:

s = 2r − 3

and

−10r + 5s + 15 = 0

We showed that these equations are equivalent to a single function of r. State and graph that function, 
letting r be the independent variable and s be the dependent variable. Label a few of the infinitely many 
ordered pairs that satisfy the system.

Solution
The function can be stated as the first equation above. It tells us that the s-intercept is −3, so we can plot 
(0, −3) on the Cartesian plane. Additional points can be found by moving to the right or left from (0, −3)
and moving upward or downward by twice that distance. The slope is 2, so if we start at any point on 
the line and move to the right by 1 unit (add 1 to r), we must move upward by 2 units (add 2 to s) to 
stay on the line. If we move to the left by 1 unit (subtract 1 from r), we must move downward by 2 units 
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(subtract 2 from s). Some of the resulting points are plotted in Fig. 17-8, along with the line connecting 
them. The line is the graph of the function

s = 2r − 3

Any point on the line (not only the ones plotted in the figure) can be called a solution to this redundant 
two-by-two linear system. Because the domain and the range are both the entire set of real numbers, the 
solution set (the set containing all the ordered pairs that satisfy the system) is not only infinite, but non-
denumerable!

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

r

s

(0,–3)

(1,–1)

(2,1)

(3,3)

(4,5)

(–1,–5)

s = 2r – 3

Solutions =
all points
on line

–10r + 5s + 15 = 0

Each axis
increment
is 1 unit

Figure 17-8  Graphs of s = 2r − 3 and −10r + 5s + 15 = 0 
as a two-by-two linear system where the 
independent variable is r and the dependent 
variable is s. The lines coincide because the 
two equations are equivalent. On both axes, 
each increment represents 1 unit.



 1. Refer to Fig. 17-9. What is the equation of line L in SI form?

 2. Refer to Fig. 17-9. What is the equation of line M in SI form?

 3.  Using the morph-and-mix method, show that the solution to the equations derived in 
Probs. 1 and 2 is x = −3 and y = 0, which shows up as the point (−3, 0).

 4.  Rotate and mirror Fig. 17-9, obtaining a new graph that shows the system with y as the 
independent variable and x as the dependent variable. Call the transposed line L by the 
new name L*, and call the transposed line M by the new name M*.

 5.  Using the graph derived in Prob. 4, what is the equation of line L* in SI form? 
Remember that x is now the dependent variable.

 6.  Using the graph derived in Prob. 4, what is the equation of line M* in SI form? 
Remember that x is now the dependent variable.

 7.  Using the morph-and-mix method, show that the solution to the equations derived in 
Probs. 5 and 6 is y = 0, and x = −3, which shows up as the point (0, −3).

 8.  Suppose we see a linear function where x is the independent variable and y is the 
dependent variable. Let’s call the function f and state it like this:

f (x) = mx + b

   where m is the slope and b is the y-intercept of the graph. In this context, f (x) is just 
another name for y. Now imagine that we derive the inverse of this function so y

2 4 6–6

2

4

6

–4

–6

(0,4)Solution
= (–3,0)

(0,–2)

x

y

L M

Figure 17-9  Illustration for Practice Exercises 1 and 2.
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becomes the independent variable and x becomes the dependent variable. We call this 
inverse function f −1, and state it as follows:

f    −1 ( y) = ny + c

   where n is the slope and c is the x-intercept. Now if f   is a function, f    −1 is almost always
a function. But sometimes it isn’t. (Some texts will say, under such conditions, that f
has no inverse, or that f    −1 does not exist. Others, such as this book, will say that if we 
consider f  as a relation, then f   always has an inverse relation, but that relation might 
not be a function.) Under what conditions is the inverse relation of a linear function 
not another function? Here’s a hint: A straight line in Cartesian coordinates represents a 
function if and only if its slope is defined.

 9.  Draw graphs of three linear functions in Cartesian coordinates whose inverses are 
relations, but not functions.

 10.  Derive a version of  f    −1 as we defined it in Prob. 8, but that contains the constants m
and b instead of the constants n and c. Here’s a hint: state f as

y = mx + b

   and morph this into SI form with x alone on the left side of the equals sign. Then, in 
place of the isolated x, write f    −1( y).
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CHAPTER

1 8

Larger Linear Systems

In this chapter we’ll solve a three-by-three linear system. That’s a triplet of linear equations in 
three variables. There are numerous ways to tackle problems of this sort. We’ll look at only 
one example and one method. The scheme presented here can be broken down into three 
major steps:

• Eliminate one variable to get a two-by-two system
• Solve that two-by-two system for both of its variables
• Solve for the original eliminated variable by substitution

Eliminate One Variable
Consider three linear equations, each having three variables: x, y, and z. Our mission: Find 
the numbers for x, y, and z that satisfy all three equations. Here is the system we’ll solve in 
this chapter:

−4x + 2y − 3z = 5
2x − 5y = z − 1
3x = −6y + 7z

Choose the vanishing variable

Let’s decide which variable we want to eliminate. It doesn’t make any difference whether it’s 
x, y, or z. If we do all the calculations right, we’ll get the same answer in the end, no matter 
which variable we choose at this stage. Let’s get rid of z, so we are left with two equations in 
x and y.
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282 Larger Linear Systems

Get the equations into form

Now that we’ve chosen the variable to eliminate, we must get all three equations into the same 
form. The following form is as good as any:

ax + by + cz = d

where a, b, c, and d are constants. The first equation is already in this form. The second 
equation is

2x − 5y = z − 1

Subtracting z from each side will put it into the form we want:

2x − 5y − z = −1

The third equation is

3x = −6y + 7z

Adding 6y to each side, we get

3x + 6y = 7z

We can subtract 7z from each side and it comes into the sought-after form:

3x + 6y − 7z = 0

We now have the three-by-three system in this uniform condition:

−4x + 2y − 3z = 5

      2x − 5y − z = −1

  3x + 6y − 7z = 0

Make z vanish once

Here are the first two revised equations again, for reference:

−4x + 2y − 3z = 5

and

2x − 5y − z = −1



Let’s multiply the second equation through by −3, getting

−6x + 15y + 3z = 3

If we add this to the first equation, we obtain the sum

  −4x + 2y − 3z = 5
−6x + 15y + 3z = 3

      −10x + 17y = 8

Make z vanish again

Now let’s scrutinize the second two revised equations. Here they are again:

2x − 5y − z = −1

and

3x + 6y − 7z = 0

We can multiply the first equation through by −7, getting

−14x + 35y + 7z = 7

When we add the second equation to this, we get

−14x + 35y + 7z = 7
      3x + 6y − 7z = 0

        −11x + 41y = 7

State the two-by-two

We have now derived two different equations in the variables x and y. This is a two-by-two 
linear system, which we know how to solve:

−10x + 17y = 8

and

−11x + 41y = 7

Are you confused?
When we set out to get rid of the variable z, we decided to work on the first two equations in the revised 
three-by-three system, and then work on the second two equations. You might ask, “Why can’t we elimi-
nate z between the first equation and the second one, and then between the first equation and the third 
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one? Or between the first and the third, and then between the second and the third?” The answer is, “We 
can! Either of those alternative schemes will work just as well as the one we chose. The intermediate equa-
tions will differ, but the ultimate solution to the three-by-three system will turn out the same.”

Whenever you want to solve a three-by-three system of equations, you must somehow involve all three
of the equations in the solution process. As you continue to study algebra and take more advanced courses, 
you’ll learn other ways to solve three-by-three systems than the methods presented in this book. You might 
also learn techniques to solve four-by-four or larger systems. In any case, if you want to find the solution 
to a system of equations, you must give every one of those equations some “say” in the outcome.

Here’s a challenge!
Put the original equations in our three-by-three linear system into a form where z appears all by itself on 
the left sides of the equals signs, and expressions containing only constants, x, and y appear on the right 
sides. This defines two independent variables (in this case x and y) and a single dependent variable (z).
Here are the original equations, for reference:

−4x + 2y − 3z = 5

2x − 5y = z − 1

3x = −6y + 7z

Solution
To morph these equations, we can use the same sort of algebra that gets two-variable linear equations into 
SI form. Here are the processes, step-by-step. You have learned enough algebra so you can follow along 
without detailed explanations.

−4x + 2y − 3z = 5

2y − 3z = 4x + 5

−3z = 4x − 2y + 5

−z = (4/3)x − (2/3)y + 5/3

z = (−4/3)x + (2/3)y − 5/3

2x − 5y = z − 1

2x − 5y + 1 = z

z = 2x − 5y + 1

3x = −6y + 7z

3x + 6y = 7z

(3/7)x + (6/7)y = z

z = (3/7)x + (6/7)y

These three equations represent relations that map pairs of variables (in this case x and y) into a single 
variable (in this case z). If we call the relations f, g, and h, then we can write:

                  f (x, y) = (−4/3)x + (2/3)y − 5/3

g (x, y) = 2x − 5y + 1

h (x, y) = (3/7)x + (6/7)y



Solve the Two-by-Two
Let’s continue our quest to solve the three-by-three linear system. We have obtained a two-by-
two system in x and y. Here it is again:

−10x + 17y = 8

and

−11x + 41y = 7

We can use any of the methods described in Chap. 16 to tackle this. Let’s use double elimina-
tion.

Eliminate x, solve for y

Let’s multiply the first equation through by −11 and the second equation through by 10. 
When we do that, we get

110x − 187y = −88

and

−110x + 410y = 70

Now let’s add these two equations in their entirety:

    110x − 187y = −88

−110x + 410y = 70

                223y = −18

Dividing through by 223 tells us that y = −18/223. This fraction happens to be in lowest 
terms (a fact that you can verify if you like).

Eliminate y, solve for x

Let’s multiply the first equation in our two-by-two system through by −41 and the second 
equation through by 17. That gives us

410x − 697y = −328

and

−187x + 697y = 119
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Adding these equations, we get

    410x − 697y = −328
−187x + 697y = 119

                223x = −209

Dividing through by 223 tells us that x = −209/223. This fraction, like the previous one with 
the same denominator, is in lowest terms.

Two down, one to go!

We’ve now solved for two of the three unknowns in our three-by-three system. We have the 
values for x and y:

x = −209/223

and

y = −18/223

In the next section, we’ll substitute these values back into one of the original three equations 
and solve for z. Then we’ll check our work. Something tells me that z is going to be a fraction 
with a denominator of 223. What do you think?

Are you confused?
You might again question the choice of solution processes. “Why,” you might ask, “do we use the double-
elimination method to solve the two-by-two system here? Why not use morph-and-mix or rename-and-
replace?” The answer is, of course, “We can use either of those methods.”

Here’s a challenge!
Solve the preceding two-by-two system using the morph-and-mix method. Consider x the dependent 
variable.

Solution
Once again, here’s our pair of equations:

−10x + 17y = 8

and

−11x + 41y = 7

We must get both of these into SI form, with x all by itself on the left sides of the equals signs. Step-by-step, 
the first equation morphs like this:

−10x + 17y = 8

                      −10x = −17y + 8



 10x = 17y − 8

 x = (17/10)y − 8/10

The second equation morphs as follows:

 −11x + 41y = 7

 −11x = −41y + 7

 11x = 41y − 7

 x = (41/11)y − 7/11

Now we mix the right-hand sides, getting a first-degree equation in y:

(17/10)y − 8/10 = (41/11)y − 7/11

Let’s get a common denominator here. We can multiply the numerators and denominators on the left side 
of the equals sign by 11, and multiply the numerators and denominators on the right side of the equals 
sign by 10. That gives us

(187/110)y − 88/110 = (410/110)y − 70/110

Multiplying the whole equation through by 110 to get rid of the fractions, we obtain

187y − 88 = 410y − 70

Adding 88 to each side produces

187y = 410y + 18

Subtracting 410y from each side, we have

−223y = 18

We can divide through by −223 to get y = 18/(−223) = −18/223. This agrees with the result we obtained 
by double elimination. We can plug this into either of the SI equations we derived above, solving for x.
The first equation will do. Step-by-step:

 x = (17/10)y − 8/10

 = (17/10)(−18/223) − 8/10

 = −306/2,230 − 8/10

 = −306/2,230 − 1,784/2,230

 = (−306 − 1,784)/2,230

 = −2,090/2,230

 = −209/223
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It agrees again! This practically guarantees that our answers are correct. We’ve found x and y by two differ-
ent routes, and they’ve come out the same both times. If we made an error somewhere, the answers would 
almost certainly disagree.

Substitute Back
Now we have the values for x and y, and we’re confident that they’re correct because we’ve 
arrived at them from two different directions. Here they are again:

x = −209/223

and

y = −18/223

Plug them in

We can use any of the original equations or their revisions to solve for z. Let’s use the third 
original equation:

3x = − 6y + 7z

Plugging in the numbers for x and y, and proceeding step-by-step, we get

 3 × (−209/223) = −6 × (−18/223) + 7z

 −627/223 = 108/223 + 7z

 −735/223 = 7z

 7z = −735/223

 z = −105/223

Are you confused?
If the last step in the above calculation confuses you, note that −735/7 = −105. That’s the numerator in 
the fraction. I had a feeling that −735 would cleanly divide by 7, because I acted on my hunch that z
would be a fraction with a denominator of 223. By now, you have probably noticed that in linear systems, 
fractional solutions have a way of coming out with identical denominators. There’s a good reason for that, 
but it would be a distraction to delve into the “why” of it right now. The important thing is that we have 
all three solutions to our original three-by-three linear system, at least tentatively:

 x = −209/223

 y = −18/223

 z = −105/223



Here’s a challenge!
In a problem as messy and lengthy as this, it’s vital to check the derived solutions. Here are the original 
equations once again, for reference:

 −4x + 2y − 3z = 5

 2x − 5y = z − 1

 3x = −6y + 7z

“So,” you ask, “What’s the challenge here? It’s only arithmetic!” The answer: “It’s a challenge to force our-
selves through the tedium. But it has to be done if we want to be sure our answers are correct.”

Solution
Let’s start with the first equation. Plugging in the values for x, y, and z, and then doing the arithmetic 
carefully, we pass through the following steps:

−4x + 2y − 3z = 5

−4 × (−209/223) + 2 × (−18/223) − 3 × (−105/223) = 5

836/223 − 36/223 + 315/223 = 5

(836 − 36 + 315)/223 = 5

1,115/223 = 5

5 = 5

So far, we’re doing okay. Now for the second equation check:

 2x − 5y = z − 1

 2 × (−209/223) − 5 × (−18/223) = −105/223 − 1

 −418/223 + 90/223 = −105/223 − 223/223

 (−418 + 90)/223 = (−105 − 223)/223

 −328/223 = −328/223

Two checks are done, and one remains. Here we go:

 3x = −6y + 7z

 3 × (−209/223) = −6 × (−18/223) + 7 × (−105/223)

 −627/223 = 108/223 − 735/223

 −627/223 = (108 − 735)/223

 −627/223 = −627/223
Mission accomplished!
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General Linear Systems
Now that you’ve seen two-by-two and three-by-three linear systems, you might wonder, 
“What does a three-by-three graph look like?” or “What happens when there are many linear 
equations in many variables?” or “What happens when the number of equations is not the 
same as the number of variables?”

Two-by-two geometry

The graph of a linear equation in two variables shows up as a straight line in the Cartesian 
plane, as you saw in Chap. 17. When you have two such equations, their graphs always appear 
in one of three ways:

• Two different lines that intersect at a single, unique point
• Two different lines that are parallel
• Two lines that precisely coincide

In the first case, the system has a single solution, corresponding to the point where the 
lines intersect. In the second case, there is no solution. In the third situation, there are infi-
nitely many solutions.

Cartesian three-space

The graph of a linear equation in three variables can’t be drawn on a Cartesian plane. Instead, 
we need to use a system that can portray all of space. The most common such system is called 
Cartesian three-space. It makes use of three coordinate axes, all of which intersect at their zero 
points, and in such a way that each axis is perpendicular to the other two.

Cartesian three-space is sometimes drawn in perspective, as in Fig. 18-1. In this exam-
ple, the variables are x, y, and z. If the drawings were literal, the x axis would appear hori-
zontal on the page, the y axis would appear vertical on the page, and the z axis would be 
perpendicular to the page. Note that the positive x axis goes to the right, the positive y axis 
goes upward, and the positive z axis comes toward us.

Figure 18-2 shows two specific points, P and Q, plotted in Cartesian three-space. The 
coordinates of point P are (−5, −4, 3), and the coordinates of point Q are (3, 5, −2). Points 
are denoted as ordered triples in the form (x, y, z), where the first number represents the value 
on the x axis, the second number represents the value on the y axis, and the third number 
represents the value on the z axis.

Three-by-three geometry

The graph of a linear equation in three variables appears as a flat plane (not a line!) in Carte-
sian three-space. When we have three linear equations in three variables, their graphs can show 
up in any of the following ways:

• Three different planes that all intersect at a single, unique point.
• Three different planes, two of which are parallel, and the third of which intersects the 

other two in a pair of parallel lines.



+x

+y

+z

–x

–y

–z

Figure 18-1  Cartesian three-space. The x axis increases positively 
from left to right, the y axis increases positively 
from the bottom up, and the z axis increases 
positively from far to near. All three axes intersect at 
the origin and are mutually perpendicular.

P

(–5,–4,3)

Q

(3,5,–2)

+x

+y

+z

–x

–y

–z

Each axis
increment
is 1 unit

Figure 18-2  Two points in Cartesian three-space, along with the 
corresponding ordered triples of the form (x,y,z). On all 
three axes, each increment represents 1 unit.
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• Three different planes, such that each pair of planes intersects in a different line, and 
all three of those lines are mutually parallel.

• Three different planes that are mutually parallel.
• Two planes that precisely coincide, and a third plane parallel to them both.
• Two planes that precisely coincide, and a third plane that intersects them both in a 

single line.
• Three different planes that all intersect in a single line.
• Three planes that all precisely coincide.

In the first case, the system has a unique solution, corresponding to the point where all 
three planes intersect. In each of the second through fifth cases, there is no solution. In each 
of the last three cases, there are infinitely many solutions. Try to envision all these situations. 
Note that two planes are parallel in space if and only if they do not intersect.

Are you confused?
Most people have trouble envisioning the graphs of three-by-three linear systems. Computer programs 
have been developed to portray systems like these, and such programs can be a big help. But they, too, 
give only a limited perspective. A true view would require a three-dimensional hologram that we could 
walk around in! When it comes to n-by-n linear systems where n is a natural number larger than 3, even a 
walk-through hologram can’t give us a complete picture.

It’s not easy to verbally describe what happens in n-by-n linear systems when n is large. Often, a unique 
solution exists in this type of system, but not always. A unique solution always comes down to a single 
point in Cartesian n-space. When n is large, there are many ways that an n-by-n linear system can fall short 
of a unique solution. Even so, if we write up a system of n linear equations in n variables “at random,” the 
chance is good that it will have a single solution.

As you can imagine, the process of solving an n-by-n system of linear equations where n > 3 is bound 
to be time-consuming and tedious. See how much longer it took us to solve the three-by-three system in 
this chapter than it took us to solve the two-by-two systems in Chap. 16! As n increases, so does the time 
it will take us to solve the system, unless we have access to a computer. The process of solving an n-by-n
linear system is ideally suited to computer applications, which grind out solutions by brute force.

Fewer equations than variables

All of the linear systems we’ve examined so far have the same number of equations as variables. 
Occasionally, a linear system has fewer equations than variables. Whenever that happens, 
there is no single solution to the whole system.

Think of a linear system with two variables but only one equation. If we consider this as a 
one-by-two linear system (one equation, two variables), then it has infinitely many solutions. 
It is the same thing as a redundant two-by-two system. In the Cartesian plane, it shows up as 
a single straight line.

Now imagine a one-by-three linear system (a single equation in x, y, and z). Its graph in 
Cartesian three-space is a single flat plane. The solutions are all the ordered triples (x,y,z) that 
represent points on the plane. There are infinitely many such points, so this type of system has 
infinitely many solutions. This type of system can never have a unique solution.



Things get more interesting with two-by-three linear systems (two equations and three 
variables x, y, and z). The graph appears as two planes in Cartesian three-space. The planes 
might intersect in a straight line, in which case there are infinitely many solutions: all the 
ordered triples (x,y,z) that correspond to points on that line. A second possibility is that the 
two planes are parallel. Then they don’t intersect anywhere, and there are no solutions to 
the system. A third possibility is that the planes coincide. Then, again, there are infinitely 
many solutions: all the ordered triples (x,y,z) that correspond to points on that plane. Two flat 
planes in space can never intersect in a single point. That means a two-by-three linear system 
can’t have a unique solution.

More equations than variables

When a linear system in two variables has more than two equations, or a linear system in 
three variables has more than three equations, we have “extra data.” We can imagine such 
a system as a two-by-two or three-by-three linear system with one or more extra equations 
thrown in.

If a two-by-two or three-by-three linear system is inconsistent, then adding one or more 
extra equations cannot make it consistent. If a two-by-two or three-by-three linear system is 
consistent, then adding one or more extra equations might make it inconsistent or redundant, 
but not necessarily.

These statements can be generalized to any number of linear equations in any number 
of variables. If we encounter 27 equations in 28 variables, we can be certain that the system 
has no unique solution. But if we see 28 or more equations in 28 variables, we can’t know if 
the system has a unique solution until we try to solve it, preferably with the help of a com-
puter. If the system has no unique solution, the algebra will lead us into absurd or useless 
statements.

Here’s a challenge!
Draw a graph of the following three-by-two linear system to illustrate why it does not have a unique solution:

 y = x + 1

 y = 3x − 1

 y = −2x − 3 

Solution
These three equations are in SI form. The y-intercepts are 1, −1, and −3, respectively. The slopes are 1, 
3, and −2 respectively; they can be used to find second points as shown in Fig. 18-3, which portrays the 
graphs of the equations as a single system. Each line intersects both of the others, but there is no single 
point common to all three lines. For any linear system to have a solution, no matter how many variables 
there are, the graphs of all the equations must have a single point in common. If there are two variables, 
that point can be represented by a unique ordered pair. If there are three variables, the point can be repre-
sented by a unique ordered triple. If there are n variables, the point can be represented by a unique ordered 
n-tuple.
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Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  Here are the three revised original equations for the three-by-three system we tackled in 
this chapter:

−4x + 2y − 3z = 5

      2x − 5y − z = −1

  3x + 6y − 7z = 0

   In the section “Eliminate One Variable,” we got rid of z between the first two of these 
equations, and then between the second two. Now eliminate z between the first and third 
equations.

x

y

(–3,3)

(0,–3)

(4,5)
(2,5)

(0,–1)

(0,1)

y = x + 1

y = –2x – 3

y = 3x – 1

Each axis
increment
is 1 unit

Figure 18-3 Graphs of three equations in two variables, 
considered as a linear system. There is no 
solution, because there is no single point 
common to all three lines. On both axes, 
each increment represents 1 unit.



 2.  Derive a two-by-two linear system in x and y from the solution to Prob. 1, along 
with the equation in x and y that we derived from the second and third three-variable 
equations in the section “Eliminate One Variable.”

 3.  Solve the two-by-two linear system obtained in the solution to Prob. 2. Use the double-
elimination method.

 4.  Solve for z by substituting the values for x and y (solution 3) into the first equation 
stated in Prob. 1.

 5.  Derive a two-by-two linear system in x and y from the solution to Prob. 1, along with 
the equation in x and y that we derived from the first two three-variable equations in 
the section “Eliminate One Variable.”

 6.  Solve the two-by-two linear system obtained in the solution to Prob. 5. Use the morph-
and-mix method, treating y as the independent variable and x as the dependent variable.

 7.  Solve for z by substituting the values for x and y (solution 6) into the second equation 
stated in Prob. 1.

 8.  The following four-by-two linear system has a unique solution, even though there are 
more equations than variables. How can we know this without doing any algebra or 
graphing the equations? What is that solution?

 y = −x + 1

 y = −2x + 1

 y = 3x + 1

 y = 4x + 1

 9.  Plug in the values for x and y that appear to solve the set of equations in Prob. 8, based 
on the reasoning in the solution to Prob. 8. Verify that these values satisfy all four 
equations.

 10.  Graph all four of the lines presented in Prob. 8. On the basis of this graph, explain why 
any pair or triplet of these equations, taken as a two-by-two or three-by-two system, has 
the same unique solution as any other pair or triplet of the equations.
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CHAPTER

1 9

The Matrix Morphing Game

There’s a neat way to solve three-by-three linear systems by removing the variables from the 
notation. Only the coefficients remain, and these can be arranged into columns and rows to 
form a table-like array called a matrix. In this chapter, you’ll learn how to manipulate matrixes
(or matrices) to solve three-by-three linear systems.

How to Build a Matrix
When you encounter a three-by-three linear system, each variable is multiplied by a constant 
in each equation. Constants can also appear by themselves without variables. The form can 
vary from one equation to another. Matrices aren’t so flexible. They have to be written in a 
specific, standard form. Everything must go into a preassigned “cubbyhole.”

The equation form

Before we can write any three-by-three linear system as a matrix, we have to get the triplet of 
equations into the following form:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

Where x, y, and z are the variables, and the letters a, b, c, and d with numeric subscripts 
are the coefficients. A coefficient can be any real number including 0. When we want to 
get a system into matrix form, we must write all the coefficients, even the ones that are 
equal to 0!
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The matrix form

Once we have morphed all the equations into the proper form, we can remove the variables 
and equals signs. Then we can put the numbers into an array having three rows, each with 
four numbers:

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

Some texts enclose matrices in huge parentheses or brackets. But they aren’t really necessary, and 
they can clutter things up. Let’s not use them.

Are you confused?
You might ask, “Can matrices represent two-by-two systems? Can they represent systems larger than three-
by-three? Can they represent asymmetrical systems such as five-by-four?” The answers are “Yes,” “Yes,” 
and “Yes.” In this chapter, we’ll look at three-by-three systems only, but matrix techniques can be applied 
to any linear system.

Here’s a challenge!
Put the following three-by-three linear system into matrix form:

 7y = 3z + 3

 8z = −2x − 7

 12x = 7y

Solution
None of these three equations is in the proper form for conversion to matrix notation. We’ll have to 
manipulate them. Here are the processes, step-by-step. For the first equation:

 7y = 3z + 3

 0x + 7y = 3z + 3

 0x + 7y − 3z = 3

For the second equation:

 8z = −2x − 7

 2x + 8z = −7

 2x + 0y + 8z = −7

For the third equation:

 12x = 7y

 12x − 7y = 0

 12x − 7y + 0z = 0
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Now we have these three equations that make up the linear system:

 0x + 7y − 3z = 3

 2x + 0y + 8z = −7

 12x − 7y + 0z = 0

We may want to write the above equations like this, so we are sure to get the signs of the coefficients right:

 0x + 7y + (−3z) = 3

 2x + 0y + 8z = −7

 12x + (−7y) + 0z = 0

We can write this system in matrix form by removing the variables and equals signs, and then aligning the 
coefficients into neat rows and columns:

0 7 −3 3

2 0 8 −7

12 −7 0 0

Matrix Operations
Imagine the matrix for a three-by-three linear system as a game board with 12 positions, 
arranged in three horizontal rows and four vertical columns. Let’s invent a matrix morphing 
game. There are three types of moves in this game: swap, multiply, and add. We can make as 
many of these moves as we want.

Swap

We may interchange all the elements between two rows in a matrix, while keeping the elements 
of both rows in the same order from left to right. For example, if we start with

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

we can change it to

a3 b3 c3 d3

a2 b2 c2 d2

a1 b1 c1 d1

In this case, the first and third rows have been swapped. Note that we cannot swap individual 
elements or vertical columns! The swap maneuver is only allowed between entire rows.



Multiply

We may multiply all the elements in any row by a nonzero constant, keeping the elements in 
the same order from left to right. For example, if we have

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

we can change this to

a1 b1 c1 d1

ka2 kb2 kc2 kd2

a3 b3 c3 d3

In this case, all the elements in the second row have been multiplied by k. Because the absolute 
value of k can be smaller than 1, we can extrapolate this rule to let us multiply or divide all the 
elements in any row by a nonzero constant. As with the swap move, we can operate only on 
entire rows. We can’t do this maneuver with individual elements or with columns.

Add

We may add all the elements in any row to all the elements in another row, and then replace 
the elements in either row by the sum, taking care to keep the elements of both rows in the 
same order from left to right. Suppose we start with this matrix:

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

We can change it to either of the following:

a1 b1 c1 d1

a1 + a2 b1 + b2 c1 + c2 d1 + d2

a3 b3 c3 d3

or

a1 + a2 b1 + b2 c1 + c2 d1 + d2

a2 b2 c2 d2

a3 b3 c3 d3

Note that the replaced row must be one of the two involved in the sum. In this example, we 
aren’t allowed to replace the third row with the sum of the first and second rows.
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The final goal

The matrix morphing game, like any sensible game, has an ultimate objective. Our goal is to 
get a matrix representing a three-by-three linear system into this form:

1 0 0 x

0 1 0 y

0 0 1 z

where x, y, and z are real numbers. This is called the unit diagonal form.
Now imagine that we start with a three-by-three linear system, make it into a matrix, and 

then play the matrix morphing game until we get the unit diagonal form. Do you suspect that 
the values x, y, and z, which appear in the far right column, will represent the solution to the 
linear system? If so, you are right, provided the system is consistent (has a unique solution).

Are you confused?
Do you wonder why we can’t multiply all the elements in a row by 0? Think about this for a minute. Doing 
that would wipe out one of the equations in the system, leaving us with a two-equation system having 
three variables. Such a system doesn’t contain enough information to define a unique solution.

Are you still confused?
You might also ask, “Why can’t we add two rows in a matrix and then replace the remaining row (the one 
not involved in the sum) with that sum?” Well, we could try it, and for awhile it might seem to work. But 
such a move would delete the information in the equation represented by the replaced row, turning it into a 
mere hybrid of the other two rows. We would be left with the equivalent of a two-equation system in three 
variables. We might end up thinking that the original system was redundant, when in fact it was consistent.

A Sample Problem
In this section, we’ll solve a three-by-three linear system using matrix operations. The game 
can be played in many ways. The process in this section doesn’t represent the only avenue by 
which the final result can be reached. But if we manage to avoid making mistakes, we’ll always 
get to the same destination, no matter what road we take!

The game plan

Anyone who plays a game needs a plan. Here’s a strategy for the matrix morphing game that 
works well for me. First, we get equations into form:

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3



Then we make the matrix:

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

Next, we get the matrix into echelon form, which looks like this:

# # # #

0 # # #

0 0 # #

where a pound sign (#) can represent any real number. Then we go for the diagonal form:

@ 0 0 #

0 @ 0 #

0 0 @ #

where a pound sign can represent any real number, and an at sign (@) can represent any non-
zero real number. Our final goal is the unit diagonal form:

1 0 0 x

0 1 0 y

0 0 1 z

Once we’ve put a matrix into the unit diagonal form, we may find that one or more of the 
solutions x, y, or z is a fraction that can be reduced. We ought to reduce all solutions to their 
lowest forms in the interest of elegance.

What if we can’t “win”?

If we find it impossible to get a matrix into the unit diagonal form, our failure indicates one 
of four things:

• We didn’t try hard enough
• We made a mistake somewhere
• The original system is inconsistent
• The original system is redundant

The system to be solved

Now let’s methodically tackle a three-by-three linear system and solve it using the matrix mor-
phing game. Here are the equations:

 3x + z = 2y + 11
 4y + 2z = x
 −5x + y = 3z − 20
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Formatting the equations

None of these equations is in the proper form for assembling a matrix. Let’s get them that 
way! Fortunately, the maneuvers are simple. With the first equation, we can subtract 2y from 
each side to get

3x − 2y + z = 11

With the second equation, we can subtract x from each side to obtain

−x + 4y + 2z = 0

With the third equation, we can subtract 3z from each side, getting

−5x + y − 3z = −20

We now have the equations in form, and can state the whole system like this:

 3x − 2y + z = 11
 −x + 4y + 2z = 0
 −5x + y − 3z = −20

Building the matrix

To construct the matrix, we remove all the variables and arrange the remaining numbers into 
an orderly array, paying close attention to the signs:

3 −2 1 11

−1 4 2 0

−5 1 −3 −20

Deriving the echelon form

There are many different routes by which we can arrive at an echelon form of this matrix. 
Let’s start by getting 0 at the extreme left in the bottom row. We can multiply the second row 
by −5 to obtain

3 −2 1 11

5 −20 −10 0

−5 1 −3 −20

We can add the second and third rows and then replace the third row with the sum to get

3 −2 1 11

5 −20 −10 0

0 −19 −13 −20



Now let’s get 0 at the extreme left in the second row. If we multiply the second row by −3/5,
we come up with

3 −2 1 11

−3 12 6 0

0 −19 −13 −20

Adding the first and second rows and then replacing the second row with the sum, we have

3 −2 1 11

0 10 7 11

0 −19 −13 −20

Now the number −19 in the third row must somehow be made to vanish, which means we 
must turn it into 0. Let’s use the second row to “attack” it. If we multiply the second row 
through by 19 and the third row through by 10 (combining two moves), we get

3 −2 1 11

0 190 133 209

0 −190 −130 −200

Adding the second and third rows and then replacing the third row with the sum, we obtain 
a matrix in echelon form:

3 −2 1 11

0 190 133 209

0 0 3 9

Deriving the diagonal form

To morph the echelon matrix into diagonal form, we simply keep playing the game. In this 
case, we want to get 0s in the places that now contain −2, 1, and 133. Let’s start with the third 
element in the first row, currently equal to 1. We can use the third row to “attack” it. Let’s 
divide the third row by −3 to get

3 −2 1 11

0 190 133 209

0 0 −1 −3

Adding the first and third rows and then replacing the first row with the sum, we get

3 −2 0 8

0 190 133 209

0 0 −1 −3
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Let’s make the number 133 vanish. We can use the third row as the “weapon” here. If we 
multiply the third row by 133, we get

3 −2 0 8

0 190 133 209

0 0 −133 −399

Adding the second two rows and then replacing the second row with the sum, we obtain

3 −2 0 8

0 190 0 −190

0 0 −133 −399

We now have an opportunity to reduce the sizes of the numbers in the second and third rows. 
Let’s divide the second row through by 190, and divide the third row through by −133. That 
gives us

3 −2 0 8

0 1 0 −1

0 0 1 3

We have only to make the element −2 in the first row vanish, and we’ll have the matrix in 
diagonal form. We can multiply the second row by 2 to obtain

3 −2 0 8

0 2 0 −2

0 0 1 3

Adding the first and second rows and then replacing the first row with the sum, we get

3 0 0 6

0 2 0 −2

0 0 1 3

Deriving the unit diagonal form

Our remaining task is simple and clean. We can divide the top row by 3 and the middle row 
by 2, obtaining the unit diagonal matrix

1 0 0 2

0 1 0 −1

0 0 1 3



Stating and reducing the solution

The solution to the system is now clear. We have no fractions to reduce, because we kept 
the sizes of the numbers down as we went along. (Otherwise we’d have fractions with large 
numerators and denominators, although they would divide out cleanly and leave us with 
integers.) Evidently,

 x = 2

 y = −1

 z = 3

Are you confused?
If you think we’ve finished solving this problem, you’re indeed confused. We must check our work! Only 
then can we be totally confident that our solution is correct, because it’s easy to make mistakes in the 
matrix morphing game. When we plug the values for x, y, and z into the first original equation, here’s 
what happens:

 3x + z = 2y + 11

 3 × 2 + 3 = 2 × (−1) + 11

 6 + 3 = −2 + 11

 9 = 9

Check one. Now for the second equation:

 4y + 2z = x

 4 × (−1) + 2 × 3 = 2

 −4 + 6 = 2

 2 = 2

Check two. Finally, the third equation:

 −5x + y = 3z − 20

 −5 × 2 + (−1) = 3 × 3 − 20

 −10 − 1 = 9 − 20

 −11 = −11

Check three. Mission accomplished.

Here’s an extra-credit challenge!
Play the matrix morphing game with the linear system we just got done solving, but take a different route 
this time. Don’t reduce the sizes of any of the integers. Let the absolute values grow as large as they “want”! 
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When you get the unit diagonal form, you should end up with sloppy fractions in the far-right column. 
When you reduce these fractions, you should get

1 0 0 2

0 1 0 −1

0 0 1 3

Solution
You’re on your own. Have fun!

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. B. The solutions in the appendix may not 
represent the only way a problem can be figured out. If you think you can solve a particular 
problem in a quicker or better way than you see there, by all means try it!

 1.  Put the following three-by-three linear system into the proper form for conversion to 
matrix notation:

 x = y − z − 7

 y = 2x + 2z + 2

 z = 3x − 5y + 4

 2. Write the set of equations from the solution to Prob. 1 in the form of a matrix.

 3. Write the set of equations represented by the following matrix:

0 4 −1 −2

5 −3/2 8 1

1 1 1 1

 4. Put the matrix of Prob. 3 into echelon form.

 5. Put the matrix derived in the solution to Prob. 4 into diagonal form.

 6.  Reduce the matrix derived in the solution to Prob. 5 to a form with the smallest possible 
absolute values in each row, such that all the numbers in the matrix are integers.

 7.  Reduce the matrix derived in the solution to Prob. 6 to unit diagonal form. Then state 
the tentative solution to the three-by-three linear system we derived from the matrix in 
Prob. 3 and stated in solution 3.

 8.  Check the values for x, y, and z derived in the solution to Prob. 7 to be sure they’re 
correct. To do this, plug the numbers into the equations stated in the solution to Prob. 3.



 9.  Put the following three-by-three linear system into matrix form. Then play the matrix 
morphing game for awhile, trying to get the unit diagonal form. It can’t be done! Why?

x + y + z = 1

x + y + z = 2

x + y + z = 3

 10.   Put the following three-by-three linear system into matrix form. Then play the matrix 
morphing game for awhile, trying to get the unit diagonal form. It can’t be done! Why?

 x + y + z = 1

 2x + 2y + 2z = 2

 3x + 3y + 3z = 3
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CHAPTER

2 0

Review Questions 
and Answers

Part Two
This is not a test! It’s a review of important general concepts you learned in the previous 
nine chapters. Read it though slowly and let it “sink in.” If you’re confused about anything 
here, or about anything in the section you’ve just finished, go back and study that material 
some more.

Chapter 11

Question 11-1

What things can we do with the equation if we want to change its form, but be sure that the 
result is equivalent to the original equation and still valid?

Answer 11-1

We can do any of these things:

• Switch the left and right sides.
• Add a quantity to the left side, and add the same quantity to the right side.
• Subtract a quantity from the left side, and subtract the same quantity from the right 

side.
• Multiply the left side by a nonzero quantity, and multiply the right side by the same 

nonzero quantity.
• Divide the left side by a nonzero quantity, and multiply the right side by the same 

nonzero quantity.

Question 11-2

What are the five types of inequalities that can exist between two numbers, variables, or math-
ematical expressions p and q? How are these inequalities symbolized?
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Answer 11-2

If we have two numbers, variables, or mathematical expressions p and q, then five types 
inequalities can exist:

• If p is strictly smaller than q, we write p < q.
• If p is smaller than or equal to q, we write p ≤ q.
• If p is not equal to q but we don’t know which is smaller, we write p ≠ q.
• If p is larger than or equal to q, we write p ≥ q.
• If p is strictly larger than q, we write p > q.

Question 11-3

Suppose we multiply an inequality through by a nonzero real number. Under what circum-
stances will the sense of the inequality be reversed? Under what circumstances will the sense 
of the inequality stay the same?

Answer 11-3

The sense of the inequality is reversed if we multiply through by a negative real number, and 
it remains the same if we multiply through by a positive real number.

Question 11-4

Suppose we divide an inequality through by a nonzero real number. Under what circum-
stances will the sense of the inequality be reversed? Under what circumstances will the sense 
of the inequality stay the same?

Answer 11-4

The sense of the inequality is reversed if we divide through by a negative real number, and it 
remains the same if we divide through by a positive real number.

Question 11-5

If a quantity x is strictly smaller than another quantity y, then we can also say x is smaller than 
or equal to y. How would we write this fact entirely in logical symbols?

Answer 11-5

Remember the symbols for “strictly smaller than,” “smaller than or equal to,” and “logically 
implies.” The above statement can be written symbolically as

(x < y) ⇒ (x ≤ y)

Question 11-6

We can’t square both sides of a “strictly smaller than” inequality and be sure that we’ll get 
another valid statement. Provide an example that shows why.

Answer 11-6

Consider the fact that −3 < 2. If we square both sides, we get 9 < 6, which is false. There are 
infinitely many other examples.
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Question 11-7

Is it possible to multiply a quantity by a positive real number and have the product be smaller 
than the original quantity? If so, give an example.

Answer 11-7

Yes, this is possible. If the original quantity is negative, then when we multiply it by a positive 
real number, it gets more negative. That means it gets smaller. Remember that numbers get 
smaller, not larger, as they grow more negative!

Question 11-8

Is it possible to divide a positive real number by another positive real number, and have the 
quotient turn out strictly larger than the original? If so, give an example. 

Answer 11-8

Yes, this can happen. Suppose we start with a positive real number, and then divide it by 
some positive number smaller than 1. That will give us a quotient larger than the original. For 
example, if we divide 3 by 1/4, we get 12, which is larger than 3.

Question 11-9

Suppose we have a “strictly larger than” inequality. What can we do to both sides, and be sure 
that the result will be another valid “strictly larger than” statement?

Answer 11-9

We can do any of the following things:

• Add the same quantity to both sides.
• Subtract the same quantity from both sides.
• Multiply both sides by the same positive quantity.
• Divide both sides by the same positive quantity.

Question 11-10

Imagine a hypothetical relation called clobber (symbolized by ©) and three variables a, b, and c.
How do we define the reflexive, symmetric, and transitive properties for the clobber relation? 
If clobber has all three of these properties, what sort of relation is it?

Answer 11-10

Clobber is reflexive if and only if, for all possible values of a,

a © a

Clobber is symmetric if and only if, for all possible values of a and b,

(a © b) ⇒ (b © a)

Clobber is transitive if and only if, for all possible values of a, b, and c,

[(a © b) and (b © c)] ⇒ (a © c)

If clobber has all three of these properties, then clobber is an equivalence relation.
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Question 12-1

Suppose a is a constant and x is a variable for which we want to solve. We see the following 
equation:

x − 2a = 5a

How can we get an equation with x alone on the left side of the equals sign and a multiple of 
a alone on the right?

Answer 12-1

We can morph the equation as follows:

 x − 2a = 5a
 (x − 2a) + 2a = 5a + 2a
 x = 7a

Question 12-2

Suppose b is a constant and z is a variable for which we want to solve. We see:

z + 3b = b/2

How can we get an equation with z alone on the left side of the equals sign and a multiple of 
b alone on the right?

Answer 12-2

We can morph the equation as follows:

 z + 3b = b/2

 2(z + 3b) = 2(b/2)

 2z + 6b = b

 (2z + 6b) − 6b = b − 6b

 2z = −5b

 z = (−5/2)b

Question 12-3

When we divide both sides of a first-degree equation by any expression containing the vari-
able, there’s a hidden risk. What is that risk?

Answer 12-3

The expression containing the variable must not be equal to 0, or we’ll run into trouble of some 
sort. The fact that the expression contains an unknown means that we can’t be sure it’s nonzero 
until we know the solution to the equation! When trying to solve a first-degree equation, there-
fore, it’s best to avoid dividing through by any expression that contains the variable.
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Question 12-4

Suppose we see the following equation where a, b, c, and d are constants and x is the 
variable:

3abx = 7x /(c + d )

To be sure this equation makes sense, we must restrict the values of the constants. How?

Answer 12-4

We must require that c ≠ −d. That is, we can’t let c and d be additive inverses. If c and d
happen to be additive inverses, then we will find ourselves dividing by 0 on the right side of 
the equation.

Question 12-5

Which of the following equations are first-degree equations in one variable? Which are not? 
Letters a, b, and c represent constants. Letters x, y, and z represent variables.

 x + 3a + 2b = c

 (c + a)x = b

 (x + y)a = b

 y2 + ay + b = c

 x + y + z = 0

Answer 12-5

The first and second equations are first-degree equations in one variable. The third and fifth 
equations aren’t, because they contain more than one variable. The fourth equation isn’t, 
because it contains the square of the variable.

Question 12-6

When using letters to represent constants, or when reading texts in which letters are used to 
represent constants, we have to be clear and careful with the context. Why?

Answer 12-6

Some letters are widely used to represent specific physical, chemical, or mathematical 
constants. In physics, c represents the speed of light in a vacuum; N is often used to 
represent a chemical constant called the Avogadro constant; e is commonly used to 
represent the exponential constant. We don’t want to let c be a general constant if we’re 
writing about relativity theory, or N stand for a general constant if the subject happens 
to be chemistry, or e indicate a general constant if the discussion involves exponential 
functions. 
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Question 12-7

Suppose a, b, and c are constants, and x is a variable. How can we manipulate the follow-
ing equation so it contains x all by itself on the left side, and an expression containing 
the constants without x on the right side, showing and justifying every step in an S/R 
table?

x − 2c + 7 = 4x + 2ax + b + c

Answer 12-7

We can morph the equation as described in Table 20-1. The end result is

x = (b + 3c − 7) / (−3 − 2a)

Question 12-8

We had better be careful about something in the last step of the process shown by Table 20-1. 
What’s that?

Answer 12-8

We must require that 2a ≠ −3. If we do not impose that restriction, we allow for the possibility 
of division by 0 in the last step.

Question 12-9

What is the standard form for a first-degree equation in one variable?

Table 20-1. Equation morphing process for Answer 12-7. We solve for 
x in terms of the constants. But there’s a catch, which is addressed in 

Question and Answer 12-8.

Statements Reasons

x − 2c + 7 = 4x + 2ax + b + c This is the equation we are given
x + 7 = 4x + 2ax + b + 3c Add 2c to each side
x = 4x + 2ax + b + 3c − 7 Subtract 7 from each side
x − 4x = 2ax + b + 3c − 7 Subtract 4x from each side
x − 4x − 2ax = b + 3c − 7 Subtract 2ax from each side
x + (−4x) + (−2a)x = b + 3c − 7  Change subtractions to negative additions

 on left side of equation
[1 + (−4) + (−2a)]x = b + 3c − 7  Right-hand distributive law on left side of 

 equation
(−3 − 2a)x = b + 3c − 7 Simplify left side of equation
x = (b + 3c − 7)/(−3 − 2a) Divide each side by (−3 − 2a)
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Answer 12-9

If a and b are constants and x is the variable, then the standard form is

ax + b = 0

Any first-degree equation in one variable can always be put into this form. The variable might 
be called something other than x, and the constants a and b might be expressed in terms of 
other constants and numbers, but this basic form can always be derived.

Question 12-10

Put the equation derived in Answer 12-7, and shown in the last line of Table 20-1, into the 
standard form for a first-degree equation in one variable.

Answer 12-10

Here’s the equation in the form we got when we solved for x in terms of the constants:

x = (b + 3c − 7)/(−3 − 2a)

We can multiply each side by (−3 − 2a) to obtain

(−3 − 2a)x = b + 3c − 7

Next, we can subtract the quantity (b + 3c − 7) from each side, getting

(−3 − 2a)x − (b + 3c − 7) = 0

Technically, this equation is in the standard form for a first-degree equation in one variable. 
But we might want to rename the expressions made up of a, b, c, and numerals. Let’s use single 
letters p and q, as follows:

(−3 − 2a) = p

and

−(b + 3c − 7) = q

Now we have

px + q = 0

Chapter 13

Question 13-1

Figure 20-1 shows a mapping between sets. Four sets are identified, labeled A, B, C, and D.
The five points in set B represent all the elements in that set, and the five elements in set C
represent all the elements of that set. The dashed curves represent the entire mapping; they 
“tell the whole story.” Furthermore, B ⊂ A and C ⊂ D. Which set is the maximal domain? 
Which set is the co-domain? Which set is the essential domain? Which set is the range?



Part Two  315

Answer 13-1

The maximal domain is set A. The co-domain is set D. The essential domain is set B. The 
range is set C.

Question 13-2

In Fig 20-1, the five points within set C represent the entire set. On that basis, what can we 
say about the mapping?

Answer 13-2

The mapping is onto set C. That is, it is a surjection.

Question 13-3

In Fig 20-1, note that each of the points in set B maps to a single point in set C. What can we 
say about the mapping on this basis?

Answer 13-3

The mapping is one-to-one. That is, it is an injection.

Question 13-4

In Fig 20-1, suppose that each point in set B maps to a single point in set C, and vice-versa. 
On this basis, and according to what we know so far about the points and the sets, what type 
of mapping is this?

A

B

C

D

Figure 20-1  Illustration for Questions and Answers 13-1 
through 13-8.
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Answer 13-4

The mapping is a bijection between B and C, because it is both a surjection and an 
injection.

Question 13-5

Based on Fig. 20-1, and on the descriptions given so far, what type of relation is the mapping 
between B and C?

Answer 13-5

The mapping is a function, because no single element in set B is mapped to more than one 
element in set C.

Question 13-6

Suppose the sense of the mapping in Fig. 20-1 were reversed, so that it went from set C to 
set B. This would give us the inverse of the relation from B to C. Would that inverse be a 
function?

Answer 13-6

Yes, because no single element in set C would map to more than one element in set B.

Question 13-7

Let’s call the five points in set B of Fig. 20-1 by the names b1 through b5, and the five points in 
set C by the names c1 through c5. Suppose that b1 maps to c5, b2 maps to c4, b3 maps to c3,
b4 maps to c2, and b5 maps to c1. How can we state this mapping as a set of ordered pairs?

Answer 13-7

We can state the mapping as the set

{(b1,c5), (b2,c4), (b3,c3), (b4,c2), (b5,c1)}

Question 13-8

In the ordered pairs given in Answer 13-7 relevant to Fig. 20-1, which elements are values of 
the independent variable? Which elements are values of the dependent variable?

Answer 13-8

The elements b1 through b5 are values of the independent variable, and the elements c1 through 
c5 are values of the dependent variable.

Question 13-9

Figure 20-2 shows a mapping that’s almost the same as the mapping of Fig. 20-1. The only 
difference is that there is an extra element in set B, and it maps to one of the existing elements 
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in set C. The six points in set B represent all the elements in that set, and the five elements in 
set C represent all the elements of that set. As before, the dashed curves represent the entire 
mapping. Is this new mapping a surjection? Is it an injection? Is it a bijection? Is it a relation? 
Is it a function?

Answer 13-9

The mapping of Fig. 20-2 is a surjection, because it maps to every element of set C. It’s not an 
injection, however, because it’s not one-to-one. That means it is not a bijection. This mapping 
is a relation. It’s also a function, because no single element in set B maps to more than one 
element in set C.

Question 13-10

Consider the mapping of Fig. 20-2 as a relation. Now suppose the sense were reversed, so that 
the mapping went from set C to set B, giving us the inverse of the relation. Would that inverse 
be a function?

Answer 13-10

No, because one of the elements of set C would map to two elements of set B.

Chapter 14

Question 14-1

The Cartesian plane is divided into four quadrants. How are those quadrants normally oriented? 
How are the positive and negative values of the variables portrayed in those quadrants?

A

B

C

D

Figure 20-2  Illustration for Questions and Answers 13-9 
and 13-10.
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Answer 14-1

The first quadrant of the Cartesian plane is usually the one at the upper right, and both 
variables are positive. In the second quadrant, which is usually at the upper left, the inde-
pendent variable is negative and the dependent variable is positive. In the third quadrant, 
which is usually at the lower left, both variables are negative. In the fourth quadrant, which 
is usually at the lower right, the independent variable is positive and the dependent variable 
is negative.

Question 14-2

Figure 20-3 shows three points, called P, Q, and R, plotted in the Cartesian plane. In which 
quadrants do these points lie? What are the ordered pairs representing these points?

Answer 14-2

Point P is in the third quadrant, and is represented by the ordered pair (−5,−3). Point Q is not 
in any quadrant because it is directly on one of the axes; it is represented by (0,−1). Point R is 
in the first quadrant, and is represented by (2,4).

Question 14-3

Imagine horizontal lines (that is, lines parallel to the x axis) running through each of the 
three points in Fig. 20-3. What are the equations of these lines? Do any of them represent 
functions of x ?

2 4 6–6
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Q

R

x

y

Figure 20-3  Illustration for Questions and Answers 
14-2 through 14-6.
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Answer 14-3

A horizontal line through point P has the equation y = −3. A horizontal line running through 
point Q has the equation y = −1. A horizontal line through point R has the equation y = 4. 
All three of these lines represent functions of x, because they all pass the vertical-line test. A 
movable vertical line (that is, a line parallel to the y axis) will never intersect any one of those 
three horizontal lines at more than one point.

Question 14-4

Imagine vertical lines running through each of the three points in Fig. 20-3. What are the 
equations of these lines? Do any of them represent functions of x ?

Answer 14-4

A vertical line through point P has the equation x = −5. A vertical line running through point 
Q has the equation x = 0. A vertical line through point R has the equation x = 2. None of these 
lines represent functions of x, because they all fail the vertical-line test. A movable vertical line 
that intersects any of those three lines at one point will intersect it at infinitely many other 
points as well.

Question 14-5

Suppose the coordinates of each of the points in Fig. 20-3 are transposed; that is, the order 
of each ordered pair is reversed. Call the new points P*, Q*, and R*. In which quadrants will 
these new points appear?

Answer 14-5

The coordinates of P* will be (−3, −5), so P* will be in the third quadrant, just as is P. The 
coordinates of Q* will be (−1, 0), so it will not be in any quadrant, but on the negative x axis. 
The coordinates of R* will be (4, 2), so it will be in the first quadrant, just as is R.

Question 14-6

Suppose both of the coordinates of each of the points in Fig. 20-3 are multiplied by −1. Call 
the new points −P, −Q, and −R. In which quadrants will these new points appear?

Answer 14-6

The coordinates of −P will be (5, 3), so −P will be in the first quadrant. The coordinates of 
−Q will be (0, 1), so it will not be in any quadrant, but on the positive y axis. The coordinates 
of −R will be (−2, −4), so it will be in the third quadrant.

Question 14-7

Figure 20-4 shows the graphs of four different relations between x and y in Cartesian coordi-
nates. Which of these relations are functions of x ? How can we tell?

Answer 14-7

Using the vertical-line test, we can see that curve E and line G both represent functions of x, at 
least within the viewing region of this graph. They both pass the test. However, neither curve 
F nor curve H are functions of x, because they both fail the vertical-line test.
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Question 14-8

Can we restrict the domains of relations shown by curves F or H to make either of them rep-
resent a nontrivial function of x ? If so, how?

Answer 14-8

Imagine “taking slices” of curve F or curve H by considering only that portion of the 
curve that falls between two movable vertical lines. This limits the values of x that apply 
to the curves, thereby restricting the domain. No matter how we “slice it,” we always 
get two values of y for each value of x when we do this with either F or H. The only 
way we can get a function out of curve F is to bring the two vertical lines together so 
they both intersect F at the extreme left point or the extreme right point of the ellipse. 
That restricts the domain so severely that we get mappings of one point onto one other 
point, but those are trivial functions! In the case of curve H, we can bring the two 
vertical lines together so they both intersect the curve at the extreme left point. Again, 
that’s a trivial result.

Question 14-9

Consider the inverses of the relations shown in Fig. 20-4. A convenient way to imagine 
these inverses is to let y be the independent variable and let x be the dependent variable, 
so we have mappings from values of y to values of x. Which of the inverses, defined in this 
way, are functions?
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Figure 20-4  Illustration for Questions and Answers 14-7 
through 14-10.
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Answer 14-9

Using the horizontal-line test, we can see that G and H represent functions of y, at least within 
the viewing region. They both pass the test. But neither E nor F represents functions of y,
because they fail the horizontal-line test. (Part of curve E is itself a horizontal line.)

Question 14-10

Can we restrict the domains of the inverses of relations E or F to make either of them into a 
nontrivial function of y? If so, how?

Answer 14-10

In the case of the inverse of the “bent line” curve E, we can make it into a function if we 
confine the domain to values of y strictly larger than 1. This is based on the assumption that 
the lines that make up curve E continue straight for infinite distances in both directions. The 
inverse of curve F is not so cooperative. Imagine “taking slices” of by considering only that 
portion of the curve that falls between two movable horizontal lines. This limits the values of y
that apply to the curve, thereby restricting the domain. No matter how we “slice it,” we always 
get two values of x for each value of y. The only way we can get a function out of the inverse 
of curve F is to bring the two horizontal lines together so they both intersect the graph at the 
extreme top point or the extreme bottom point. Those are trivial results.

Chapter 15

Question 15-1

Figure 20-5 is a Cartesian graph showing the same three points P, Q, and R as we saw 
in Fig. 20-3. Three lines, each extending indefinitely in either direction, pass through pairs 
of these points. Let’s call the lines PQ, QR, and PR. (It’s visually apparent which is which!) 
Assume that the ordered pairs for the points are all pairs of integers. In other words, assume 
that the points are exactly where they appear to be. Based on this information, how can we 
determine the slope of line PQ? How can we determine the y-intercept of line PQ?

Answer 15-1

The slope of a line is equal to the change in the y-value (Δy) divided by the change in the 
x-value (Δx) as we move from one point on the line to another point. We know the ordered 
pairs for the two points as P = (−5,−3) and Q = (0,−1). Therefore,

Δy = −1 − (−3)
= −1 + 3

 = 2

and

 Δx = 0 − (−5)
 = 0 + 5
 = 5
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That means Δy /Δx = 2/5, which is the slope of the line. The y-intercept is the y-value at Q,
because Q happens to lie on the y axis. That value is −1.

Question 15-2

In Fig. 20-5, how can we determine the slope of line QR ? The y-intercept?

Answer 15-2

We know the ordered pairs for the two points as Q = (0,−1) and R = (2,4). Therefore,

 Δy = 4 − (−1)

 = 4 + 1

= 5

and

Δx = 2 − 0

= 2

That means Δy /Δx = 5/2, which is the slope of the line. As with line PQ, the y-intercept is −1,
which is the y-value at point Q.
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Figure 20-5  Illustration for Questions and Answers 
15-1 through 15-10.
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Question 15-3

In Fig. 20-5, how can we determine the slope of line PR ? The y-intercept?

Answer 15-3

We know the ordered pairs for the two points as P = (−5,−3) and R = (2,4). Therefore,

Δy = 4 − (−3)
= 4 + 3

 = 7

and

Δx = 2 − (−5)
= 2 + 5

 = 7

That means Δy /Δx = 7/7 = 1, which is the slope of the line. The y-intercept can be inferred. 
Note that if we move to the right from point P by Δx units, we must go up by the same num-
ber of units to stay on the line. If we increase the x-value of point P by 5 units, we arrive at the 
y axis, and we’ll be at a point 5 units above the y-value of P. The y-value of P is −3, so 5 more 
than that is 2. The y-intercept of line PR is therefore equal to 2.

Question 15-4

Based on Answers 15-1, 15-2, and 15-3, what are the slope-intercept forms of the equations 
for lines PQ, QR, and PR ?

Answer 15-4

Now that we know the slopes and the y-intercepts of all three lines, we can write the slope-
intercept equations straightaway. Remember the general slope-intercept form for a line in 
Cartesian coordinates:

y = mx + b

where x is the independent variable, y is the dependent variable, m is the slope, and b is the 
y-intercept. For line PQ, we have

y = (2/5)x − 1

For line QR, we have

y = (5/2)x − 1

For line PR, we have

y = x + 2
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Question 15-5

How can we determine the point-slope form of the equation for line PQ, based on the coor-
dinates of point P and the slope of the line?

Answer 15-5

Remember the point-slope form for a straight line in Cartesian coordinates:

y − y0 = m(x − x0)

where x is the independent variable, y is the dependent variable, (x0, y0) are the coordinates of 
a point on the line, and m is the slope of the line. We know that P = (−5, −3), so x0 = −5 and 
y0 = −3. We also know that for line PQ, the slope m is equal to 2/5. Therefore, the point-slope 
equation for line PQ is

y − (−3) = (2/5)[x − (−5)]

which can be simplified to

y + 3 = (2/5)(x + 5) 

Question 15-6

How can we determine the point-slope form of the equation for line QR, based on the coor-
dinates of point R and the slope of the line?

Answer 15-6

We know that R = (2, 4), so x0 = 2 and y0 = 4. We also know that for line QR, the slope m is 
equal to 5/2. Therefore, the point-slope equation for line QR is

y − 4 = (5/2)(x − 2)

Question 15-7

How can we determine the point-slope form of the equation for line PR, based on the coordi-
nates of point P and the slope of the line?

Answer 15-7

We know that P = (−5, −3), so x0 = −5 and y0 = −3. We also know that for line PR, the slope 
m is equal to 1. Therefore, the point-slope equation for line PR is

y − (−3) = x − (−5)

which can be simplified to

y + 3 = x + 5
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Question 15-8

How can we determine the point-slope form of the equation for line PR, based on the coordi-
nates of point R and the slope of the line?

Answer 15-8

We know that R = (2, 4), so x0 = 2 and y0 = 4. We also know that for line PR, the slope m is 
equal to 1. Therefore, the point-slope equation for line PR is

y − 4 = x − 2

Question 15-9

It’s intuitively obvious that the equations we derived in Answers 15-7 and 15-8 must represent 
the same line. How can we prove it by showing that the equations are equivalent?

Answer 15-9

If we can convert one of the equations into the other using the rules for equation morphing, 
it will prove that the equations are equivalent. Let’s start with

y + 3 = x + 5

We can subtract 7 from each side, getting

y − 4 = x − 2

That’s all there is to it!

Question 15-10

Starting with the slope-intercept forms, how can we morph the equations for lines PQ, QR,
and PR in Fig. 20-5 into the form

ax + by = c

where a, b, and c are integer constants?

Answer 15-10

From Answer 15-4, the slope-intercept form of the equation for line PQ is

y = (2/5)x − 1

We can multiply through by 5 to obtain

5y = 2x − 5

Subtracting 2x from each side gives us

−2x + 5y = −5
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That’s in the form we want! Again from Answer 15-4, the slope-intercept form of the equation 
for line QR is

y = (5/2)x − 1

When we multiply each side by 2, we get

2y = 5x − 2

Subtracting 5x from each side, we obtain

−5x + 2y = −2

That’s in the form we want! Once again referring to Answer 15-4, the slope-intercept form of 
the equation for line PR is

y = x + 2

Subtracting x from each side gives us

−x + y = 2

That’s in the form we want!

Chapter 16

Question 16-1

In Chap. 16, we learned how a two-by-two linear system in variables x and y can be solved by 
the following process:

• Morph both equations into SI form with y all by itself on the left side of the 
equals sign.

• Mix the two equations to get a first-degree equation in x.
• Solve the first-degree equation for x.
• Substitute that solution back into one of the SI equations to solve for y.

How can we solve such a system by morphing and mixing alone, without substituting either 
variable for the other?

Answer 16-1

We can go through the morph-and-mix process twice, first for one variable and then for the 
other. We proceed like this:

• Morph both equations into SI form with y all by itself on the left side of the 
equals sign.

• Mix the two equations to get a first-degree equation in x.
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• Solve the first-degree equation for x.
• Morph both equations into SI form with x all by itself on the left side of the 

equals sign.
• Mix the two equations to get a first-degree equation in y.
• Solve the first-degree equation for y.

Question 16-2

How can we put the following two-by-two linear system into a pair of SI equations with y all 
by itself on the left side of the equals sign?

2x − y + 8 = 0

and

x − 3y + 9 = 0

Answer 16-2

By now, we’re good enough at equation manipulation to write down the steps one after 
another, without having to justify everything. For the first original equation, we can 
do this:

2x − y + 8 = 0

−y + 8 = −2x

−y = −2x − 8

y = 2x + 8

and for the second original equation, we can do this:

x − 3y + 9 = 0

−3y + 9 = −x

−3y = −x − 9

3y = x + 9

y = (1/3)x + 3

Question 16-3

How can we combine the two equations from Answer 16-2 to get a first-degree equation and 
solve the original system for x?

Answer 16-3

We can mix the right sides of the two SI equations together and then solve the resulting first-
degree equation in x by manipulation. Here it goes, one step at a time:
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2x + 8 = (1/3)x + 3

6x + 24 = x + 9

6x + 15 = x

5x + 15 = 0

5x = −15

x = −3

Question 16-4

How can we put the two-by-two linear system from Question 16-2 into a pair of SI equations 
with x all by itself on the left sides of the equals signs?

Answer 16-4

For the first original equation, we can do this:

2x − y + 8 = 0
2x + 8 = y
2x = y − 8

x = (1/2)y − 4

and for the second original equation, we can do this:

x − 3y + 9 = 0

x + 9 = 3y

x = 3y − 9

Question 16-5

How can we combine the two equations from Answer 16-4 to get a first-degree equation and 
solve the original system for y?

Answer 16-5

We can mix the right sides of the two SI equations together and then solve the resulting first-
degree equation in y by manipulation, as follows:

(1/2)y − 4 = 3y − 9
y − 8 = 6y − 18

y + 10 = 6y
10 = 5y

y = 2

Question 16-6

How can we be sure the solution we obtained in Answers 16-3 and 16-5 is in fact the correct 
solution to the original two-by-two linear system?
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Answer 16-6

The solution we have obtained is x = −3 and y = 2. We must plug these values into both of the 
original equations to be certain we’ve gotten the right solution. For the first original equation, 
we proceed like this:

 2x − y + 8 = 0
 2 × (−3) − 2 + 8 = 0
 −6 − 2 + 8 = 0
 0 = 0

It checks out! For the second original equation, we do this:

 x − 3y + 9 = 0
 −3 − (3 × 2) + 9 = 0
 −3 − 6 + 9 = 0
 0 = 0

It checks again! Now we know the solution we obtained is correct.

Question 16-7

Do you suspect that I concocted the above problem so it would come out with a pair of “clean 
integers” for the solution? If so, you are right! How can we compose a two-by-two linear sys-
tem as a test problem (for someone else to solve), and be sure the solution will turn out to be 
a pair of integers?

Answer 16-7

We can choose a point where the graphs of two lines intersect, and assign different slopes to 
those lines. Then we can write down the equations in point-slope form, using the solution 
point as the reference for both lines. Finally, we can convert the point-slope equations to some 
other form to get the test problem. For extra credit, you can try this and then solve the test 
problem you’ve created.

Question 16-8

How can we add multiples of the two original equations stated in Question 16-2 to solve the 
linear system for x ? For reference, here are the equations again:

2x − y + 8 = 0
x − 3y + 9 = 0

Answer 16-8

We can multiply the first equation through by −3 and then add it to the second equation, 
getting the sum

 −6x + 3y − 24 = 0
 x − 3y + 9 = 0
  −5x − 15 = 0
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To solve this, we add 15 to each side and then divide through by −5, as follows:

 −5x − 15 = 0

 −5x = 15

 x = −3

Question 16-9

How can we add multiples of the two original equations stated in Question 16-2 to solve the 
linear system for y ?

Answer 16-9

We can multiply the second equation through by −2 and then add it to the first equation, 
getting the sum

 2x − y + 8 = 0

 −2x + 6y − 18 = 0

 5y − 10 = 0

To solve this, we add 10 to each side and then divide through by 5, like this:

 5y − 10 = 0

 5y = 10

 y = 2

Question 16-10

How can we solve the two-by-two linear system stated in Question 16-2 by the rename-and-
replace (substitution) method? Here are the original equations again, for reference:

2x − y + 8 = 0

and

x − 3y + 9 = 0

Answer 16-10

We start by converting either of the two equations to SI form, so one of the variables appears 
all alone on the left side of the equals sign. Let’s use the first equation and isolate y on the left 
side. To manipulate the equation, we proceed just as we did in Answer 16-2:

 2x − y + 8 = 0
 −y + 8 = −2x
 −y = −2x − 8
 y = 2x + 8
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Next, we substitute the quantity (2x + 8) for y in the second equation and solve the result for 
x, as follows:

x − 3y + 9 = 0

x − 3(2x + 8) + 9 = 0

x − 6x − 24 + 9 = 0

−5x − 15 = 0

−5x = 15

x = −3

Now that we know the value of x, we can plug it into either equation and solve for y. Let’s use 
the first equation. Then we proceed as follows:

2x − y + 8 = 0

2 × (−3) − y + 8 = 0

−6 − y + 8 = 0

−6 + 8 = y

y = 2

Chapter 17

Question 17-1

Let’s consider again the two-by-two system we saw in Question 16-2. How can we graph this 
system in Cartesian coordinates, with x as the independent variable and y as the dependent 
variable? Here are the original equations:

2x − y + 8 = 0

and

x − 3y + 9 = 0

Answer 17-1

We can use the SI forms of the equations to find their y-intercepts, and the solution of the sys-
tem to find a third point that lies on both lines. We’re lucky here, because the intersection point 
is fairly far away from the y axis. The SI forms of the equations were derived in Answer 16-2. 
Respectively, they are:

y = 2x + 8
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and

y = (1/3)x + 3

We know from these equations that the y-intercepts are 8 and 3, so the point (0, 8) is on 
the first line and the point (0, 3) is on the second line. The solution to the system, as we’ve 
already determined, is (−3, 2). That point lies on both lines. Figure 20-6 shows plots of 
these three points, along with plots of the lines connecting the points and representing the 
equations.

Question 17-2

How can we determine the x-intercept of the line representing the equation y = 2x + 8 on the 
basis of the known slopes and the point data in Fig. 20-6? (We can set y = 0 and then calculate 
x by arithmetic, but the purpose of this exercise is to demonstrate the geometric principles of 
slope and intercept.)

Answer 17-2

The slope of the line is 2. Therefore, if we start from any point on the line and move in the 
positive x direction by n units, we must move in the positive y direction by 2n units to stay on 
the line. In the opposite sense, if we start from any point on the line and move in the negative y
direction by p units, we must move in the negative x direction by p /2 units to stay on the line. 
Let’s start at the point (0, 8), which is the y-intercept. If we move in the negative y direction 

y = (1/3)x + 3

y = 2x + 8

(0,8)

(0,3)

Each axis
increment
is 1 unit

Solution =
(–3,2)

x

y

Figure 20-6  Illustration for Questions and Answers 
17-1 through 17-6.
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along the line until y = 0, we’ll end up on the x axis, and we’ll have gone 8/2, or 4, units in the 
negative x direction from the y axis. That means the x-intercept is −4. It looks that way in the 
figure; now we know it’s really true.

Question 17-3

How can we verify that the preceding answer is correct by manipulating the equation for the 
line?

Answer 17-3

We can start with either the original equation or the SI form with y as the dependent variable, 
and manipulate things until we get the SI form with x all alone on the left side of the equals 
sign. In Answer 16-4, that was done starting with the original equation. If we start with the SI 
form with y as the dependent variable, we can proceed like this:

 y = 2x + 8

 y − 8 = 2x

 (1/2)y − 4 = x

 x = (1/2)y − 4

This SI equation tells us that the x-intercept is equal to −4.

Question 17-4

How can we determine the x-intercept of the line representing the equation y = (1/3)x + 3 on 
the basis of the known slopes and the point data in Fig. 20-6? (As in Question 17-2, we can 
set y = 0 and then solve for x; but again, this exercise is meant to show how slope and intercept 
are related geometrically.)

Answer 17-4

The slope of the line is 1/3. Therefore, if we start from any point on the line and move in 
the positive x direction by n units, we must move in the positive y direction by n /3 units to 
stay on the line. In the opposite sense, if we start from any point on the line and move in the 
negative y direction by p units, we must move in the negative x direction by 3p units to stay 
on the line. Let’s start at the point (0, 3), which is the y-intercept. If we move in the negative 
y direction along the line until y = 0, we’ll end up on the x axis, and we’ll have gone 3 × 3, or 
9, units in the negative x direction from the y axis. That means the x-intercept is −9. This is 
outside the field of view in Fig. 20-6.

Question 17-5

How can we verify that the preceding answer is correct by manipulating the equation for the line?

Answer 17-5

As we did in Answer 17-3, we can start with either the original equation or the SI form with y as 
the dependent variable, and manipulate things until we get the SI form with x all alone on the 
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left side of the equals sign. In Answer 16-4, that was done starting with the original equation. If 
we start with the SI form with y as the dependent variable, we can do this:

y = (1/3)x + 3
y − 3 = (1/3)x

3y − 9 = x
x = 3y − 9

This SI equation tells us that the x-intercept is equal to −9.

Question 17-6

How can we morph Fig. 20-6, the graph of the system from Question and Answer 17-1 and 
Fig. 20-6, to get a graph that will show the same system with y as the independent variable 
and x as the dependent variable? 

Answer 17-6

We can use the rotate-and-mirror method. We start with Fig. 20-6 and rotate the entire 
assembly as a single mass—axes, lines, and points—counterclockwise by a quarter-turn (90°). 
Then we mirror the whole thing left-to-right. Finally, we reverse the ordered pairs to obtain 
the new points. The result is shown in Fig. 20-7.

Question 17-7

What are the SI forms of the equations for the lines in Fig. 20-7?

Solution =
(2,–3)

(3,0) (8,0)

Each axis
increment
is 1 unit

x

y

Figure 20-7  Illustration for Questions and Answers 
17-6 through 17-10.
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Answer 17-7

They are the equations we derived in Answers 17-3 and 17-5:

x = (1/2)y − 4

and

x = 3y − 9

Question 17-8

What is the x-intercept of the line representing the equation x = (1/2)y − 4?

Answer 17-8

We can answer this straightaway, because the equation is in SI form with x as the dependent 
variable. It’s −4.

Question 17-9

What is the x-intercept of the line representing the equation x = 3y − 9?

Answer 17-9

Again, we can infer this from the SI equation having x as the dependent variable. It’s −9.

Question 17-10

Based the known slopes of the lines, and on the point data shown in Fig. 20-7, at what points 
would the lines representing the two-by-two linear system intersect the graph of the equation 
y = −2?

Answer 17-10

The graph of the equation y = −2 would appear as a vertical line in Fig. 20-7, parallel to the 
x axis and running through the point (−2, 0). To reach this line from the point (2, −3), we can 
travel in the negative y direction by 4 units along either of our existing lines. First, let’s move 
along the line for x = (1/2)y − 4. The slope is 1/2. That means if we go 4 units in the negative 
y direction, we must go 4/2, or 2, units in the negative x direction to stay on the line. That will 
put us at the point (−2, −5). Now let’s move along the line for the equation x = 3y − 9. The 
slope is 3. Therefore, if we go 4 units in the negative y direction, we must go 4 × 3, or 12, units 
in the negative x direction to stay on the line. That will get us to the point (−2, −15).

Chapter 18

Question 18-1

Here is a set of equations that forms a three-by-three linear system:

 4x = 8 + 4y + 4z
 2y = 5 + x − 5z
 4z = 13 − 2x + y
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How can we put the first of these equations into the form ax + by + c = d, where a, b, c, and 
d are constants?

Answer 18-1

Here are the steps we can take, one at a time, starting with the original equation:

4x = 8 + 4y + 4z

4x − 4y = 8 + 4z

4x − 4y − 4z = 8

Question 18-2

How can we put the second equation in Question 18-1 into the form ax + by + c = d, where 
a, b, c, and d are constants?

Answer 18-2

Here are the steps we can take, one at a time, starting with the original equation:

2y = 5 + x − 5z

−x + 2y = 5 − 5z

−x + 2y + 5z = 5

Question 18-3

How can we put the third equation in Question 18-1 into the form ax + by + c = d, where a,
b, c, and d are constants?

Answer 18-3

Here are the steps we can take, one at a time, starting with the original equation:

4z = 13 − 2x + y

2x + 4z = 13 + y

2x − y + 4z = 13

Question 18-4

Based on the rearrangements in Answers 18-1 through 18-3, how can we state the three-by-
three linear system from Question 18-1 now? What strategies can we use to solve it?

Answer 18-4

We can state the system by combining the final equations from Answers 18-1 through 18-3, 
like this:

4x − 4y − 4z = 8

−x + 2y + 5z = 5

2x − y + 4z = 13
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We can solve this system in many different ways. In Chap. 18, we learned to solve systems of 
this type by getting rid of one variable, resulting in a two-by-two linear system, solving that 
system, and then substituting back to solve for the variable we eliminated. That’s the method 
we’ll use here. We can get rid of any of the three variables by morphing and adding any two 
pairs of the three-variable equations.

Question 18-5

How can we obtain a two-by-two linear system in x and z from the three-by-three system as 
stated in Answer 18-4, using the first two equations and then the second two?

Answer 18-5

Here are the first two equations from the three-by-three linear system as stated in Answer 18-4:

4x − 4y − 4z = 8

−x + 2y + 5z = 5

We can divide the top equation through by 2 and then add the bottom equation, getting 
the sum

2x − 2y − 2z = 4

−x + 2y + 5z = 5

x + 3z = 9

That’s the first equation in our two-by-two system. To get the second equation, let’s look at 
the second two equations from the three-by-three system as stated in Answer 18-4:

−x + 2y + 5z = 5

2x − y + 4z = 13

We can multiply the bottom equation through by 2 and then add it to the top equation, 
getting

−x + 2y + 5z = 5

4x − 2y + 8z = 26

3x + 13z = 31

Now we have the following two-by-two linear system in the variables x and z :

x + 3z = 9

3x + 13z = 31

Question 18-6

How can we solve the above two-by-two system for z using the addition method?
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Answer 18-6

Let’s multiply the top equation through by −3 and then add the bottom equation to it. This 
gives us the sum

−3x − 9z = −27
3x + 13z = 31

4z = 4

This simplifies to the tentative solution z = 1.

Question 18-7

How can we solve the above two-by-two system for x by substituting in the solution for z we 
obtained in Answer 18-6?

Answer 18-7

We can plug in the value 1 for z in either of the equations in the two-by-two system as stated 
at the end of Answer 18-5. Let’s use the top equation. We have

 x + 3z = 9
 x + 3 × 1 = 9
 x + 3 = 9
 x = 6

Now we have the tentative solutions x = 6 and z = 1.

Question 18-8

Now that we know the values of x and z in the original three-by-three system, how can we 
find the value of y?

Answer 18-8

We can plug in the value 6 for x and the value 1 for z in any of the original three equations, as 
they are stated in Question 18-1. Let’s use the first one:

4x = 8 + 4y + 4z
4 × 6 = 8 + 4y + 4 × 1

24 = 8 + 4y + 4
20 = 8 + 4y

12 = 4y
3 = y

Now we have the complete, but still tentative, solution to the original three-by-three system:

x = 6
y = 3
z = 1
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Question 18-9

How can we be sure that the solution we have obtained for the three-by-three system pre-
sented in Question 18-1 is correct?

Answer 18-9

We must substitute our solutions into all three of the original equations. We did it indirectly 
for the first equation in Answer 18-8, but if we want to be completely rigorous, we must plug 
all three values into that equation along with the other two. (What if we made a mistake in 
Answer 18-8? Don’t laugh. Things like that can and do happen!) Here are the original three 
equations again, for reference:

4x = 8 + 4y + 4z
2y = 5 + x − 5z

 4z = 13 − 2x + y

Grinding out the numbers in the first equation, we get

4x = 8 + 4y + 4z
4 × 6 = 8 + 4 × 3 + 4 × 1

24 = 8 + 12 + 4
24 = 24

Check one. In the second equation, we get

2y = 5 + x − 5z

2 × 3 = 5 + 6 − 5 × 1

6 = 5 + 6 − 5
6 = 6

Check two. In the third equation, we get

4z = 13 − 2x + y

4 × 1 = 13 − 2 × 6 + 3

4 = 13 − 12 + 3
4 = 4

Check three. Mission accomplished! Note that in the mixed addition/subtraction here, we 
proceed directly from left to right after the equals sign. We subtract 12, and then we add 3. 
We don’t subtract the quantity (12 + 3)! If we have any doubts when we come across a situa-
tion like this, we can change the subtraction to negative addition. If we do that in the above 
calculation, we get an extra step, so the whole sequence goes like this:
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4z = 13 − 2x + y
4 × 1 = 13 − 2 × 6 + 3

4 = 13 − 12 + 3
4 = 13 + (−12) + 3

4 = 4

Question 18-10

Suppose that when we checked our solutions in the preceding answer, we found that they did 
not work out. What could we do then?

Answer 18-10

Whenever we check solutions and discover that they don’t work out, it means we’ve made a 
mistake somewhere. In that case, we must go back through each step in our solution process 
and find the mistake. We could also start all over and approach the problem in another way. 
For example, we could eliminate a different variable in the beginning, and/or use different 
equations to get the two-by-two linear system in the intermediate phase. After that, of course, 
we’d have to check our solutions again for correctness.

Chapter 19

Question 19-1

Here is the three-by-three linear system taken from Answer 18-4:

4x − 4y − 4z = 8
−x + 2y + 5z = 5
2x − y + 4z = 13

How can we arrange these equations into a matrix that can be manipulated to solve this system?

Answer 19-1

We take the coefficients, remove the variables, and place the remaining numerals neatly in 
the cells of a table. The first equation is represented by the top row of the matrix, the second 
equation is represented by the middle row, and the third equation is represented by the bot-
tom row. The result looks like this:

4 −4 −4 8

−1 2 5 5

2 −1 4 13

Question 19-2

What general procedure can we use to solve the three-by-three system, starting with this 
matrix?
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Answer 19-2

We can play the matrix morphing game to get the matrix into echelon form, which looks 
like this:

# # # #

0 # # #

0 0 # #

where a pound sign (#) can represent any real number. Then we continue the game and go for 
the diagonal form, which looks like this:

@ 0 0 #

0 @ 0 #

0 0 @ #

where a pound sign can represent any real number, and an at sign (@) can represent any 
nonzero real number. Then we must get the matrix into the unit diagonal form, which looks 
like this:

1 0 0 x

0 1 0 y

0 0 1 z

Once we have the matrix in the unit diagonal form, assuming we haven’t made any mistakes, 
the values x, y, and z represent the solution to the original three-by-three linear system. We 
can reduce the values we have found, if they are fractions, to their lowest forms. Finally, we 
should plug our answers into the original equations to be sure we’ve arrived at the correct 
solution to the system.

Question 19-3

How is the matrix morphing game played?

Answer 19-3

There are three types of moves:

• Swap two rows, while keeping the elements of both rows in the same order from left to 
right.

• Multiply or divide all the elements in any row by a nonzero constant, keeping the ele-
ments in the same order from left to right.

• Add all the elements in any row to all the elements in another row, and then replace 
the elements in either row by the sum, keeping the elements of both rows in the same 
order from left to right.
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Question 19-4

Using the rules outlined above, how can we get the matrix from Answer 19-1 into echelon form, 
and then reduce the sizes of the elements to make the matrix easier to work with later?

Answer 19-4

Here’s the matrix again, for reference:

4 −4 −4 8

−1 2 5 5

2 −1 4 13

We can multiply the second row by 2 to get

4 −4 −4 8

−2 4 10 10

2 −1 4 13

Now we can add the second and third rows and then replace the third row with the sum, 
obtaining

4 −4 −4 8

−2 4 10 10

0 3 14 23

If we divide the first row by 2, we get

2 −2 −2 4

−2 4 10 10

0 3 14 23

Adding the first two rows and then replacing the second row with the sum, we obtain

2 −2 −2 4

0 2 8 14

0 3 14 23

We can multiply the second row by −3 and the third row by 2 to get

2 −2 −2 4

0 −6 −24 −42

0 6 28 46
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Adding the second row to the third and then replacing the third row with the sum, we get

2 −2 −2 4

0 −6 −24 −42

0 0 4 4

This matrix is in echelon form. We can reduce the sizes of the numbers in this matrix, making 
it easier to work with as we continue the game. Let’s divide the first row by 2, the second row 
by 6, and the third row by 4, getting

1 −1 −1 2

0 −1 −4 −7

0 0 1 1

Question 19-5

Using the rules of the matrix morphing game, how can we get the last matrix in Answer 19-4 
into diagonal form?

Answer 19-5

Multiplying the second row of the echelon-form matrix we just derived by −1, we get

1 −1 −1 2

0 1 4 7

0 0 1 1

Adding the first row to the second, and then replacing the first row with the sum, we obtain

1 0 3 9

0 1 4 7

0 0 1 1

If we multiply the third row by −3, we get

1 0 3 9

0 1 4 7

0 0 −3 −3
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Adding the first and third rows and then replacing the first row with the sum gives us

1 0 0 6

0 1 4 7

0 0 −3 −3

Now let’s multiply the third row by 4/3. We get

1 0 0 6

0 1 4 7

0 0 −4 −4

Adding the second and third rows and then replacing the second row with the sum, we obtain 
the diagonal matrix

1 0 0 6

0 1 0 3

0 0 −4 −4

Question 19-6

How can we get the last matrix in Answer 19-5 into unit diagonal form?

Answer 19-6

This is easy, because we reduced our numbers along the way. We can divide the third row of 
the last matrix in Answer 19-5 by −4 to get

1 0 0 6

0 1 0 3

0 0 1 1

Question 19-7

What is the solution to the original three-by-three system based on Answer 19-6?

Answer 19-7

The solution can be read down the last column for x, y, and z in order:

x = 6
y = 3
z = 1

We know these values are correct, because they are the same values we found and verified in 
the previous section for the same original three-by-three linear system.
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Question 19-8

Suppose that we play the matrix morphing game in an attempt to solve a three-by-three linear 
system, and we come up with a matrix that looks like this:

0 0 0 −5

1 1 1 2

0 0 0 7

At first, we suspect we made a mistake somewhere. But when we try the game again, we get 
the same matrix. What is the reason for this absurd result?

Answer 19-8

The original system of equations is inconsistent. There is no unique solution.

Question 19-9

Suppose that we play the matrix morphing game in an attempt to solve another three-by-three 
linear system, and we come up with this elegant but useless matrix:

1 1 1 1

1 1 1 1

1 1 1 1

What does this tell us?

Answer 19-9

The original system of equations is redundant. There are infinitely many solutions.

Question 19-10

Can the matrix morphing game be used to solve larger systems, such as four-by-four, five-by-
five, and so on?

Answer 19-10

Yes. The matrix morphing game can be applied to linear systems of any finite dimension. 
That’s the good news. There’s bad news, too: The number of steps in the process increases 
much faster than the dimension. If carried out “manually” on a large system, matrix morphing 
is no game. It’s more like slow torture! But there’s some more good news: Computers can be 
programmed to play the matrix morphing game quickly and without pain, even for gigantic 
linear systems.
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CHAPTER

2 1

Imaginary and Complex Numbers

All the algebra we’ve done so far has been of the first degree. Variables were never squared, 
cubed, or raised to any higher power. Before we start dealing with equations of higher degree, 
let’s study numbers a little more. This chapter introduces the imaginary numbers and the 
complex numbers.

The Square Root of −1
Early mathematicians couldn’t represent fractions or ratios. Then the rational numbers were 
developed. At one time, there was no such thing as the number zero. Then the idea was con-
ceived, and zero “found its place.” Negative numbers evolved. The distinction between the 
rationals and irrationals followed. Finally, someone defined quantities that, when squared, 
would produce negative numbers.

A mystery number

If you square a positive real number, you get a positive real. If you square 0, you get 0. If you 
square a negative real, you get a positive real. You can’t square any real number and get a nega-
tive real. Within the set of real numbers, expressions such as (−1)1/2 or (−3)1/2 or (−1/5)1/2 or 
(−π)1/2 are undefined.

Before square roots of negative numbers were defined more than one mathematician 
must have asked, “What if there actually are numbers that can be squared to produce negative 
reals, but no one has found them yet?” They imagined that such numbers existed, and then 
they explored how those numbers would behave in arithmetic. The outcome of their “mind 
experiments” was the discovery of a new realm of numbers that they called “imaginary.” That 
term has been used ever since.

Many mathematics texts use the lowercase English letter i to stand for the 1/2 power of −1, 
which means the positive square root of −1. The choice of i is reasonable enough; it stands 
for “imaginary.” In science, engineering, and applied mathematics, the letter j is often used, 
because i plays other roles, notably in the expressions for sequences and series. In this book, 
we’ll call the unit imaginary number j, not i. This choice is based on my assumption that 
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350 Imaginary and Complex Numbers

you’re more likely to go into science or engineering than pure mathematics, so you should get 
used to the notation they prefer.

Positive and negative j
The square root of −1 can have either of two values, just as can the square root of any positive 
real number. One of these is j. The other is −j, the product of j and −1. These two numbers 
are not the same, just as the positive and negative square roots of 1 are not the same!

Are you confused?
Some people have trouble envisioning this unit imaginary number, also called the j operator. Does the idea 
escape your “mind’s eye”? If so, don’t worry about it. Recall from Chap. 3 that the natural numbers—the 
simplest ones—are built up from a set containing nothing! All numbers are abstract in the literal sense, so 
j isn’t any more bizarre than 0, or −1, or any other number.

Here’s a challenge!
All of the laws of real-number arithmetic also apply to the unit imaginary number. Based on that fact, 
figure out what happens as j is raised to increasing integer powers starting with the 1st power.

Solution
Keep in mind that j is the positive square root of −1, which is (−1)1/2. The parentheses are important in 
this expression. If we leave them out, someone might get the idea that we’re discussing the quantity −(11/2),
which is equal to −1. Because all the laws of the reals also apply to j, we can be sure that j 1 = j. By defini-
tion, j 2 = −1. From this we can calculate

 j 3 = j 2 × j

 = −1 × j

 = −j

Now for the 4th power:

 j 4 = j 3 × j

 = −j × j

 = −1 × j × j

 = −1 × j 2

 = −1 × (−1)

 = 1

And the 5th power:

 j 5 = j 4 × j

 = 1 × j

 = j



And the 6th:

 j 6 = j 5 × j

 = j × j

 = j 2

 = −1

Can you see what will happen if we keep going like this, increasing the integer power by 1 over and over? 
We’ll go in a four-way cycle. If you grind things out, you’ll see for yourself that j 7 = −j, j 8 = 1, j 9 = j,
j 10 = −1, and so on. In general, if n is a positive integer,

j n = j n+4

The Imaginary Number Line
The unit imaginary number j can be multiplied by any real number to get the positive square 
root of some negative real number. Conversely, the positive square root of any negative real 
number is equal to some positive-real multiple of j. If we want to multiply j by a positive real 
number b, we write jb. If we want to multiply j by a negative real number −b, we write −jb,
putting the minus sign in front of j rather than between j and b. For example,

 j 5 = (−1)1/2 × 251/2

 = (−1 × 5)1/2

 = (−5)1/2

and

 (−4)1/2 = (−1 × 4)1/2

 = (−1)1/2 × 41/2

 = j 2

If we take the real number line and multiply the value of every point by j, the result is the 
imaginary number line (Fig. 21-1).

Are you confused?
“Why,” you might ask, “do we write j before the real-number numeral and not after it?” It’s a matter of 
preference. Engineers usually write the j before the real number. If you see other notations for imaginary 
numbers such as 2j, 2i (the way most pure mathematicians write it), or even i 2, keep in mind that they all 
refer to the same quantity, which we would call j 2.

Be careful!
In the “challenge” calculation at the end of the previous section, j was raised to integer powers. If we’re not 
careful, we can confuse expressions like these with integer multiples of j. We must pay close attention to 
whether that real number is meant to be a multiple of j (as in j4), or a power of j (as in j 4).
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Relative and absolute values

Imagine a “number reflector” plane, like a mathematical mirror, perpendicular to the 
imaginary number line and passing through the point for j0, which is identical to the real 
number zero. (Zero is the only real number that’s also imaginary.) The definitions of the 
positive and negative imaginary numbers, as well as the definitions for “larger than” and 
“smaller than,” are analogous to the definitions for the real numbers. If you go upward 
on the line, the value of the imaginary number increases. If you go downward, the value 
decreases.

In Fig. 21-1, the distance of an imaginary number from the point for j0 is defined as 
its absolute value. The absolute value of an imaginary number is equal to the nonnegative 
real number you get if you remove the j, and also remove the minus sign (if there is one). 
To denote the absolute value of an imaginary number or imaginary-number expression, we 
enclose it between vertical lines, just as we do with real numbers and real-number expressions. 
For example,

|j3| = 3

and

|−j3| = 3

Larger according
to the traditional
definition

Smaller according
to the traditional
definition

Smaller
negatively

Larger
positively

Smaller
positively

Larger
negatively

j3

j2

j

j0 = 0

j2-

j3-

j-

“Number
reflector” plane

Figure 21-1  The imaginary number line. The imaginary values are 
defined according to the values of the real-number 
multiples of j.



In general, if b is any nonnegative real number, then

|jb| = b

and

|−jb| = b

To add, move upward

Think of upward distances on the imaginary number line as positive imaginary displace-
ments, and downward distances as negative imaginary displacements. If we have an imaginary 
number jb1 and we want to add another imaginary number jb2 to it, we first find the point on 
the number line representing jb1. Then we move up along the line by b2 units. That will get us 
to the point representing the sum of the two numbers, jb1 + jb2.

As an example, suppose b1 = −3 and b2 = 2. We start at the point for −j 3 and move up 
2 units. That gets us to the point for −j3 + j2. It happens to be −j, as shown on the left side 
of Fig. 21-2.

Now suppose that we start with j2 and travel upward by −3 units. We’re talking about 
displacement here, not simple distance, so negatives can make sense! An upward displacement 

Start here

Start here

Move upward
by 2 units

Finish here Finish here

Move upward
by -3 units

j3

j2

j

0

j2-

j3-

j-

Figure 21-2  On the left, a number-line rendition of 
−j3 + j 2. On the right, a number-line 
rendition of j2 + (−j3). When we move 
negatively upward, we move downward by 
the equivalent distance.
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of −3 units is the same as a downward displacement of 3 units. This process is shown on the right 
in Fig. 21-2. When we add the imaginary numbers −j3 and j2 in either order as shown, we end 
up at the same point, which corresponds to −j. We have geometrically analyzed these two facts:

−j3 + j2 = −j

and

j2 + (−j3) = −j

To subtract, move downward

Look again at the right-hand side of Fig. 21-2. We add a negative imaginary number to some 
other imaginary number. Adding a negative imaginary number is the same thing as subtract-
ing the product of −1 and that number. If we have an imaginary number jb1 and we want to 
subtract another imaginary number jb2 from it, we must first find the point on the number 
line representing jb1. Then we travel downward by b2 units along the imaginary number line. 
That will get us to the point representing jb1 − jb2.

Are you confused?
Do you suspect that the laws of real-number arithmetic apply to all imaginary numbers, and not just to j
itself? If so, you’re right! Look back at the end of Chap. 9 if you want to review those laws.

Let’s see how the distributive law, familiar with respect to multiplication and addition of real numbers, 
can be used to scrutinize the two imaginary-number sums we just analyzed. We can separate the real-number 
multiples, called the real coefficients, from j and then find the sums like this:

 −j3 + j2 = j (−3 + 2)

 = j (−1)

 = −j

and

 j 2 + (−j 3) = j [2 + (−3)]

 = j (2 − 3)

 = j (−1)

 = −j

Here’s a challenge!
In terms of the imaginary number line, express the fact that when we subtract −j 5 from −j 3, we get j 2.
Write it down in the simplest possible form.

Solution
When we subtract a negative imaginary number, we move negatively downward along the imaginary num-
ber line, meaning that we actually travel upward. Figure 21-3 shows how this works. We start at −j3 and 



move down by −5 units, which means we really move up by 5 units. We finish at the point corresponding 
to j 2. We can write

−j 3 − (−j 5) = j 2

Simplifying, we can write

−j 3 + j 5 = j 2

Real + Imaginary = Complex
When you add a real number and an imaginary number, you get a complex number. In this 
context, the term “complex” does not mean “complicated.” A better word would be “compos-
ite,” but that term has already been taken! (A composite number is a natural number that can 
be factored into a product of two or more primes.) All the rules of arithmetic you learned in 
Chap. 9 apply to complex numbers, complex-number variables, and expressions containing 
complex numbers.

How they are written

When we write a complex number, we put down the real-number part first, then a plus or 
minus sign, and the imaginary-number part. Here are some examples:

4 + j3
−4 + j5

Start here

Finish here

Move downward 

by -5 units

j3

j2

j

0

j2-

j3-

j-

Figure 21-3  Here, we start 
with −j3 and then 
subtract −j5, ending 
up with j2. When 
we go negatively 
downward, we 
go upward by the 
equivalent distance.
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−5 − j3

1 − j6

0 + j0

When a complex number is written as a difference between a real number and an imaginary 
number, we can rewrite it as a sum. The third and fourth of the above complex numbers can 
be converted to the sums

−5 + (−j3)

and

1 + (−j6)

The complex numbers 0 + j0 and 0 − j0 are the same as the real number 0. They are also 
identical to the imaginary numbers j0 and −j0.

The complex-number plane

The set of complex numbers needs two dimensions—a plane—to be graphically defined. 
The set of coordinates shown in Fig. 21-4 is the complex-number plane, in which we can plot 

2 4 6-2-4-6

j6

j4

j2

-j2

-j4

-j6

(-4,+j5)

(4,+j3)

(-5,-j3)

(1,-j6 )

a

jb

Origin = 0 + j0
= 0

Figure 21-4  The complex-number plane, showing 
five values plotted as points. The 
dashed reference lines help to show the 
coordinates of the points on the axes.



quantities that are part real and part imaginary. The real part is expressed toward the right 
for positive and toward the left for negative. The imaginary part goes upward for positive and 
downward for negative. Any point in the plane, representing a unique complex number, can 
be expressed as an ordered pair (a,jb) or written as a + jb, where a and b are real numbers and 
j is the unit imaginary number.

If a = 0 and b ≠ 0, a complex number a + jb is called pure imaginary. If a ≠ 0 and b = 0, a 
complex number a + jb is called pure real. If both a and b are positive, the point representing 
a complex number is in the first quadrant of the plane. If a is negative and b is positive, the 
point is in the second quadrant. If both a and b are negative, the point is in the third quadrant. 
If a is positive and b is negative, the point is in the fourth quadrant.

Adding and subtracting complex numbers

When we want to add two complex numbers, we must add the real parts and the complex 
parts separately. For example, the sum of 4 + j7 and 45 − j83 works out like this:

 (4 + j7) + (45 − j83) = (4 + 45) + j(7 − 83)

 = 49 + j(−76)

 = 49 − j76

Subtracting complex numbers is a little more involved; it’s best to convert a difference to 
a sum. For example, we can find (4 + j7) − (45 − j83) by multiplying the second complex 
number by −1 and then adding the two complex numbers, like this:

 (4 + j7) − (45 − j83) = (4 + j7) + [−1(45 − j83)]

 = (4 + j7) + (−45 + j83)

 = −41 + j90

Multiplying complex numbers

When you multiply one complex number by another, you should treat both of the numbers as 
sums called binomials, which means “expression with two names.” Any sum with two addends 
is a binomial. You’ll work with them a lot in the coming chapters. If a, b, c, and d are real 
numbers, then

 (a + jb)(c + jd ) = ac + jad + jbc + j 2bd

 = (ac − bd ) + j(ad + bc)

Remember that j 2 = −1! That’s why you get a minus sign between ac and bd. This rule is an 
adaptation of the product of sums rule you learned in Chap. 9.

Dividing complex numbers

When you want to divide a complex number by another complex number, things get a 
little messy. You won’t have to do this very often, but if you ever find yourself faced with 
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a complex-number division problem, you can use the following formula. If a, b, c, and d are 
real numbers, and if c and d are not both equal to 0, then

(a + jb)/(c + jd ) = (ac + bd )/(c 2 + d 2) + j(bc − ad )/(c 2 + d 2)

Complex conjugates

Every complex number has a sort of “mirror image.” Imagine two complex numbers that have 
the same real coefficients, but where one is a sum and the other is a difference, like this:

a + jb

and

a − jb

These two numbers are called complex conjugates. When you add a + jb to its conjugate, you 
get a pure real number:

 (a + jb) + (a − jb) = (a + a) + (jb − jb)
 = 2a + j0
 = 2a

When you multiply a + jb by its conjugate, you get another pure real number:

 (a + jb)(a − jb) = a2 − jab + jba − j 2b2

 = a2 − jab + jab + b2

 = a2 + b2

Complex conjugates show up together when you solve certain equations. You’ll see some 
examples in Chap. 23.

Absolute value of a complex number

The absolute value of a complex number a + jb is the distance from the origin (0, j 0) to the point 
(a, jb) on the complex-number plane. For a + j0 when a is positive, the absolute value is a. For 
a + j0 when a is negative, the absolute value is −a. For a pure imaginary number 0 + jb where b
is positive, the absolute value is b. If b is negative, the absolute value of 0 + jb is equal to −b.

Suppose we want to find the absolute value of −22 − j0. This is a pure real number. It is 
the same as −22 + j0, because j0 = 0. Therefore, the absolute value of this complex number is 
−(−22) = 22. What about the absolute value of 0 − j34? This is a pure imaginary number. The 
value of b is −34, because 0 − j34 = 0 + j(−34). Therefore, the absolute value is −(−34) = 34.

If a complex number a + jb is neither pure real or pure imaginary, the absolute value must be 
found by going through a little arithmetic. First, we square both a and b separately. Then we add 
the squares. Finally, we take the positive square root of that sum. We can write this as a formula:

|a + jb| = (a2 + b2)1/2



Let’s find the absolute value of 3 − j4. In this case, a = 3 and b = −4. Squaring both of these 
and adding the results gives us

 32 + (– 4)2 = 9 + 16

 = 25

The positive square root of 25 is 5. Therefore, |3 − j4| = 5.

Are you confused?
Do you wonder how the set of complex numbers relates to the sets of natural numbers, integers, rational 
numbers, irrational numbers, imaginary numbers, and real numbers? The answer is that every one of those 
other sets is a proper subset of the set of complex numbers.

The set of complex numbers, sometimes denoted C, is the “grandmother of all number sets” as far as 
most algebra is concerned. It’s as far into the universe of numbers as we’ll go. Someday, you might take 
courses that take you “farther out.” Who knows? Maybe you’ll discover or invent a new realm of numbers 
that nobody has worked with before.

Here’s a challenge!
Find the sum (2 + j3) and (3 + j ). Then plot both of these numbers, as well as their sum, in the complex-
number plane. These three points, along with the origin, form the vertices of a quadrilateral (four-sided 
geometric figure). It’s a special sort of quadrilateral. What sort? Why?

Solution
First, we should note that when j is multiplied by 1 in a complex number, there’s no need to write down 
the numeral 1 after the j. That’s why the j is all alone in the second addend above. To find the sum of these 
two complex numbers, we add their pure real and pure imaginary parts separately and then put the results 
back together, like this:

 (2 + j3) + (3 + j ) = (2 + 3) + j (3 + 1)

 = 5 + j4

Figure 21-5 shows the two complex numbers, along with their sum and the origin, as ordered pairs in the 
complex-number plane.

The four points lie at the vertices of a parallelogram. Remember from geometry: A parallelogram is a 
quadrilateral in which the pairs of opposite sides are parallel. To prove that the quadrilateral in Fig. 21-5 is 
a parallelogram, we can show that the pairs of line segments forming opposite sides have identical slopes.

The slope m1 of the line segment connecting (0, j 0) and (2, j 3) can be found by taking the ratio of the 
difference in jb to the difference in a, like this:

 m1 = Δjb /Δa

 = ( j3 − j0)/(2 − 0)

 = j3/2
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The line segment connecting (3, j ) and (5, j 4) is opposite from the side with slope m1. Let’s call its slope 
m2. Then

 m2 = Δjb/Δa

 = ( j4 − j )/(5 − 3)

 = j3/2

These two opposite sides are parallel. We’re halfway there! Now let’s find the slope m3 of the line segment 
connecting (2, j3) and (5, j4). It is

 m3 = Δjb /Δa

 = ( j4 − j3)/(5 − 2)

 = j /3

Finally, let’s find the slope m4 of the line segment connecting (0, j 0) and (3, j ). This line segment is oppo-
site from the side with slope m3. We have

 m4 = Δjb/Δa

 = ( j − 0)/(3 − 0)

 = j /3

2 4 6

j6

j4

j2

a

jb

(0,j0)

(2,j3)

(5,j4)

(3,j)

Slope = m1

Slope = m2

Slope = m3

Slope = m4

Figure 21-5  Addition of (2 + j3) and (3 + j ), illustrated in the 
complex-number plane.



Those two opposite sides are also parallel. This proves that the quadrilateral in Fig. 21-5 is a paral-
lelogram.

Here’s an extra-credit challenge!
Whenever you add two complex numbers and diagram the process after the fashion of Fig. 21-5, you’ll get 
a parallelogram, or else all four points will lie along a single straight line (a “squashed parallelogram”). If 
you’re ambitious, prove this. You’re on your own. Here’s a hint: Call the two complex numbers a + jb and 
c + jd, where a, b, c, and d are real numbers.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.   The laws of arithmetic for real numbers also apply to imaginary numbers. On that 
basis, how can we determine the value of j 0?

 2.   What is the value of j −2? The value of j −4? The value of j −6? The value of j −8? What 
happens as this trend continues?

 3.  Determine the value of j −1 in two ways. First, use the difference of powers law. Here’s 
a hint: Note that j −1 = j 3−4. Second, use the law of cross multiplication. Again, here’s a 
hint: Find the value of an unknown (call it z) when 1/j = z /1.

 4.  Using the difference of powers law and all the other things we’ve learned, determine the 
values of j −3, j −5, and j −7. Here are some hints:

j −3 = j 1−4

j −5 = j −1−4

j −7 = j −3−4

  What happens as this trend continues?

 5.  Using what we’ve learned in the chapter text and so far in this set of exercises, create a 
table that shows what happens when j is raised to any integer power.

 6.  Find the following:
(a) (4 + j5) + (3 − j8)
(b) (4 + j5) − (3 − j8)
(c) (4 + j5)(3 − j8)
(d) (4 + j5)/(3 − j8)

 7.  Find the difference between the complex conjugates (a + jb) and (a − jb). First, subtract 
the second from the first. Then subtract the first from the second.
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 8.  Find the quotient (a + jb)/(a − jb), assuming that a and b are not both equal to 0.

 9.  Find the quotient (a − jb)/(a + jb), assuming that a and b are not both equal to 0. How 
does this compare with the answer to Exercise 8?

 10.  Suppose k is a positive real-number constant. How many pure real numbers have 
absolute values equal to k ? How many pure imaginary numbers have absolute values 
equal to k? How many complex numbers have absolute values equal to k ? Draw a 
diagram in the complex-number plane that shows these situations.
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CHAPTER

2 2

Quadratic Equations 
with Real Roots

In this chapter, you’ll learn about single-variable quadratic equations, often called quadratics for 
short. First, you’ll see how you can recognize one. Then you’ll learn how you can solve it if there’s at 
least one solution, called a root, in the set of real numbers. Sometimes a quadratic equation has two 
real roots, sometimes it has  only one real root, and sometimes it has  no real roots.

Second-Degree Polynomials
All quadratics are second-degree equations. That means they can be written in a form that con-
tains a variable raised to the second power (squared), but no power higher than that.

Polynomials

A quadratic equation can always be portrayed as a polynomial, which means “expression with 
multiple names,” on the left side of the equals sign, with 0 on the right side. Here are some 
examples of polynomials. Only the second of these can form a quadratic if we set it equal to 0.

x − 3
−x 2 + 3x − 6
x − y 3 + 7z 2

2x − 2y 5 − 2z 7

ax 4y − bxz 3 − cy 2z 2

where a, b, and c are constants, and x, y, and z are variables. Polynomials contain parts called 
terms that are added together. The terms in a polynomial are also known as monomials. Some-
times the monomials are complicated; they can even be polynomials themselves. A polynomial 
can contain any finite number of monomials—hundreds, thousands, or millions perhaps—
but you’ll rarely see a polynomial with more than a dozen terms.
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As you know, all cases of subtraction are sums in disguise. The above expressions can be writ-
ten as pure sums like this:

x + (−3)
−x 2 + 3x + (−6)
x + (−y 3) + 7z 2

2x + (−2y 5) + (−2z 7)
ax 4y + (−bxz 3) + (−cy 2z 2)

Polynomial standard form

Any single-variable quadratic, no matter how complicated it looks when you first see it, can 
be rewritten so it appears in polynomial standard form. When the equation is in this form, the 
left side of the equals sign contains a constant multiple of the variable squared, added to a 
constant multiple of the variable itself, added to a constant. On the right side of the equals 
sign, you find 0 all by itself. Here’s the general equation:

ax 2 + bx + c = 0

where a, b, and c are constants, and x is the variable. All of the following are quadratic equa-
tions in polynomial standard form:

3x 2 + 2x + 5 = 0
3x 2 − 4x = 0
−7x 2 − 5 = 0

−4x 2 = 0

In all but the first of these, some of the constants equal 0. But the first constant, the one by 
which x 2 is multiplied, can never be 0 in a quadratic equation. If you set a = 0 in the standard 
form of a single-variable quadratic equation, you’ll get the standard form for single-variable 
first-degree equation, because the term containing x 2 vanishes:

bx + c = 0

Mutant quadratics

Quadratic equations frequently appear in disguise. I call them mutant quadratics. Every such 
equation has two things in common. First, it isn’t in polynomial standard form. Second, it can 
be morphed into that form without changing the set of roots we get when we solve it. Here 
are some examples:

x 2 = 2x + 3
x = 4x 2 − 7

x 2 + 4x = 7 + x
x − 2 = −8x 2 − 22

3 + x = 2x 2



Tables 22-1 through 22-5 show how we can convert the above equations to polynomial 
standard form. Note the last step in Table 22-5. To be “true to form,” the polynomial should 
show the terms by descending powers of the variable. The term containing x 2 should come 
first, then the term containing x, and finally the constant.

Table 22-1. Conversion of x 2 = 2x + 3 to polynomial 
standard form.

Statements Reasons

x 2 = 2x + 3 This is the equation we are given
x 2 − 2x = 3 Subtract 2x from each side
x 2 − 2x − 3 = 0 Subtract 3 from each side

Table 22-2. Conversion of x = 4x 2 − 7 to polynomial 
standard form.

Statements Reasons

x = 4x 2 − 7 This is the equation we are given
−4x 2 + x = −7 Subtract 4x 2 from each side
−4x 2 + x + 7 = 0 Add 7 to each side

Table 22-3. Conversion of x 2 + 4x = 7 + x to 
polynomial standard form.

Statements Reasons

x 2 + 4x = 7 + x This is the equation we are given
x 2 + 4x − 7 = x Subtract 7 from each side
x 2 + 3x − 7 = 0 Subtract x from each side

Table 22-4. Conversion of x − 2 = −8x 2 − 22 to 
polynomial standard form.

Statements Reasons

x − 2 = −8x 2 − 22 This is the equation we are given
8x 2 + x − 2 = −22 Add 8x 2 to each side
8x 2 + x + 20 = 0 Add 22 to each side

Table 22-5. Conversion of 3 + x = 2x 2 to polynomial 
standard form.

Statements Reasons

3 + x = 2x 2 This is the equation we are given
−2x 2 + 3 + x = 0 Subtract 2x 2 from each side
−2x 2 + x + 3 = 0 Commutative law for addition
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Are you confused?
Suppose you see an equation in one variable. You think it’s a quadratic, but you aren’t sure. Here’s an 
example:

3x 2 + x − 8 = 4x 2 + 7x + 4

If you can convert this equation to polynomial standard form, you can be certain that it’s a quadratic. If 
you can’t convert it, then two things are possible: you didn’t try hard enough, or it isn’t a quadratic. If it 
isn’t a quadratic and you want to prove that it isn’t, you must morph the equation into a form that’s obvi-
ously not convertible into polynomial standard form. That can be tricky. The next “challenge” will show 
you an example.

As things work out, you can convert the above equation to polynomial standard form. If you subtract 
4x 2 from each side, then subtract 7x from each side, and finally subtract 4 from each side, you get

−x 2 − 6x − 12 = 0

Here’s a challenge!
Show that the following is the equivalent of a first-degree equation, not a quadratic:

7x 2/2 + 7x − 5 = −23x 2/(−10) + 6x 2/5 + 3x

Solution
It takes a little intuition to solve this, but nothing beyond the mathematical skill we’ve acquired by now! 
Let’s look closely at the right side of this equation. It contains two terms with x 2. These terms are:

−23x 2/(−10)

and

6x 2/5

We can add these two terms to get a single term in x 2. If we multiply both the numerator and denominator 
of the first of the above expressions by −1, and if we multiply both the numerator and denominator of the 
second expression by 2, we get

23x 2/10

and

12x 2/10

We now have a common denominator, so we can find the sum

23x 2/10 + 12x 2/10 = 35x 2/10



which reduces to 7x 2/2. This allows us to rewrite the right side of the original equation to obtain

7x 2/2 + 7x − 5 = 7x 2/2 + 3x

Subtracting 7x 2/2 from each side, we get

7x − 5 = 3x

When we subtract 3x from each side now, we get an equation in the standard single-variable, first-degree 
form:

4x − 5 = 0

Binomial Factor Form
There’s another way to express a quadratic equation: as a product of two binomials that is 
equal to 0. In some ways, this form is simpler than the polynomial standard form. As you’ll 
soon see, the binomial factor form of a quadratic tells you the roots directly.

Binomials in quadratics

When a left side of a quadratic is expressed as a product of binomials, both of the binomi-
als must be in a specific form. The first term in each binomial is a multiple of the variable. 
The multiplicand in that term is the coefficient of the variable. The second term is a constant, 
sometimes called the stand-alone constant. Here are some examples:

x + 1
x − 5
3x + 5

−17x + 24
8x − 13

−7x − 11

Multiplying two binomials

If we multiply two binomials of the above sort where both binomials contain the same vari-
able, and if we then set the product equal to 0, we get a quadratic equation. Here’s the general 
binomial factor form for a quadratic:

(px + q)(rx + s) = 0

where p and r are the coefficients, q and s are the constants, and x is the variable.
To produce a quadratic, neither of the coefficients p nor r can be equal to 0. Other than 

that, there’s no restriction on the values of the coefficients and constants. As long as p, q, r, and 
s are all real numbers, then the resulting equation will have real roots.
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The fact that the above general equation is a quadratic might not appear obvious, but 
when we multiply out the left side of the equation using the product of sums rule, the truth 
is revealed. Start with the expression

(px + q)(rx + s)

Multiplying this out according to the product of sums rule gives us

pxrx + pxs + qrx + qs

Using the commutative law for multiplication in the first two terms and then simplifying the 
first term, we get

prx 2 + psx + qrx + qs

The distributive law “in reverse” allows us to rewrite this as

prx 2 + (ps + qr)x + qs

When we set this equal to 0, we get an equation in polynomial standard form:
prx 2 + (ps + qr)x + qs = 0

Are you confused?
If you have trouble seeing why the above equation is in polynomial standard form, you can rename the 
coefficients and constants like this:

pr = a

ps + qr = b

qs = c

By substitution, you get

ax 2 + bx + c = 0

If you wonder about the requirement that p ≠ 0 and r ≠ 0 in the binomial factor form, the reason for this 
restriction should be clear now. If p = 0 or r = 0, then pr = 0, the term containing x 2 vanishes, and you 
have the one-variable first-degree equation

(ps + qr)x + qs = 0

What are the roots?

If we find a quadratic equation in binomial factor form and we want to find the roots, we’re 
in luck! Here is the binomial factor form again, for a quadratic in the variable x :

(px + q)(rx + s) = 0



where neither p nor r equals 0. If either factor (that is, either binomial) happens to equal 0, 
then the entire expression on the left side of the equals sign becomes 0. The equation then 
reduces to 0 = 0, indicating a root! The roots of the above quadratic can therefore be found by 
solving these two first-degree equations:

px + q = 0

and

rx + s = 0

In the first equation, we can subtract q from each side, getting

px = −q

Dividing through by p, which we have said is nonzero, we get

x = −q /p

In the second equation, we can subtract s from each side to obtain

rx = −s

Then we divide through by r, which we have restricted to nonzero values, getting

x = −s /r

The roots of the quadratic are x = −q /p or x = −s /r. If X is the set of solutions, called the solu-
tion set, then

X = {−q /p,−s /r}

The solution set for an equation with multiple roots is the set containing all of those roots. 
As you continue studying algebra, you’ll come across equations with solution sets containing 
three, four, or more elements. The solution set for a true quadratic, however, never has more 
than two elements.

Here’s a challenge!
Consider the following quadratic equation in standard form:

x 2 − 2x − 15 = 0

Put this equation into binomial factor form. Then find the solution set X. Here’s a hint: The coefficients 
and constants in the binomial factor form are integers.
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Solution
The process of putting a quadratic into binomial factor form is called, not surprisingly, factoring. Learning 
how to factor a quadratic takes some practice. Some quadratics are easy to factor, others are difficult, and 
some can’t be factored at all—at least, not into binomials with real-number constants and coefficients. 
Remember the general binomial factor form:

(px + q)(rx + s) = 0

We must find the values p, q, r, and s. We’re told that they’re all integers. The coefficient of the x 2 term in 
the original equation is equal to 1. That means pr = 1 in the binomial factor form. The last constant in the 
original equation is −15. This tells us that qs = −15. Because pr = 1, we have two possibilities:

• p = 1 and r = 1
• p = −1 and r = −1

Because qs = −15, we have eight possibilities:

• q = 15 and s = −1
• q = −15 and s = 1
• q = 1 and s = −15
• q = −1 and s = 15
• q = 3 and s = −5
• q = −3 and s = 5
• q = 5 and s = −3
• q = −5 and s = 3

We can trim this down to four possibilities by eliminating duplicate scenarios. That leaves us with these 
choices:

• q = 15 and s = −1
• q = −15 and s = 1
• q = 3 and s = −5
• q = −3 and s = 5

Now let’s look at the coefficient of x in the original equation. It’s −2. This tells us that

ps + qr = −2

If we “play around” with our choices for awhile, we’ll see that if we let p = 1, q = 3, r = 1, and s = −5, we get

 ps + qr = 1 × (−5) + 3 × 1

 = −5 + 3

 = −2

That’s the right coefficient for x in the original! Let’s try those numbers in the binomial factors for the left 
side of the equation. We get

 (px + q)(rx + s) = (x + 3)(x − 5)

 = x 2 − 5x + 3x − 15

 = x 2 − 2x − 15



That’s the left side of the original quadratic. Now we know that it can be written as

(x + 3)(x − 5) = 0

The roots are easy to find. If x = −3 or x = 5, the left side of the equation becomes equal to 0. The solution 
set X is therefore

X = {−3,5}

Let’s check to be sure these solutions work in the original equation. For x = −3, we have

x 2 − 2x − 15 = 0

(−3)2 − 2 × (−3) − 15 = 0

9 − (−6) − 15 = 0

9 + 6 − 15 = 0

15 − 15 = 0

0 = 0

For x = 5, we have

x 2 − 2x − 15 = 0

52 − 2 × 5 − 15 = 0

25 − 10 − 15 = 0

15 − 15 = 0

0 = 0

Completing the Square
There are other ways to look for the roots of a quadratic. One of these methods is called com-
pleting the square.

Perfect squares

Suppose that we come across a quadratic equation whose left side breaks down into two 
identical factors, equivalent to a single factor multiplied by itself. A polynomial of this type is 
called a perfect square. Here are some examples:

• The polynomial x 2 + 2x + 1 factors into (x + 1)2

• The polynomial x 2 − 2x + 1 factors into (x − 1)2

• The polynomial x 2 + 4x + 4 factors into (x + 2)2

• The polynomial 9x 2 + 12x + 4 factors into (3x + 2)2

Quadratics built from perfect squares (by setting the right side of the equation equal to 0) are 
easy to solve. The two roots are identical, so in effect there’s only one root, “done twice over.” 
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Such a root is said to have multiplicity 2. If the above polynomial expressions are placed on the 
left sides of equations with 0 on the right, we get these quadratics:

 x 2 + 2x + 1 = 0
 x 2 − 2x + 1 = 0
 x 2 + 4x + 4 = 0
 9x 2 + 12x + 4 = 0

Respectively, they factor into:

 (x + 1)2 = 0
 (x − 1)2 = 0
 (x + 2)2 = 0
 (3x + 2)2 = 0

Because the expressions on the left sides of the above equations are equal to 0, we can take the 
square roots of both sides in each case without “plus-or-minus” ambiguity. This gives us the 
following first-degree equations, respectively:

 x + 1 = 0
 x − 1 = 0
 x + 2 = 0
 3x + 2 = 0

The solutions to these first-degree equations are easy to find:

 x = −1
 x = 1
 x = −2
 x = −2/3

These are the roots of the original quadratics. We can write down the solution sets as the 
single-element sets {−1}, {1}, {−2}, and {−2/3}.

Positive numbers on the right

Now we’ll depart slightly from the polynomial standard form. Let’s use the same perfect 
squares as above, but set the right sides to positive numbers rather than 0. Here are the new 
equations:

 x 2 + 2x + 1 = 1
 x 2 − 2x + 1 = 4
 x 2 + 4x + 4 = 16
 9x 2 + 12x + 4 = 25



The left sides can be factored exactly as before, getting

(x + 1)2 = 1
(x − 1)2 = 4
(x + 2)2 = 16
(3x + 2)2 = 25

If we take the square roots of both sides in each case here, remembering to include both the 
positive and negative results, we obtain

x + 1 = ±(1)1/2

x − 1 = ±(4)1/2

x + 2 = ±(16)1/2

3x + 2 = ±(25)1/2

These simplify to the following “double-barreled” first-degree equations:

x + 1 = ±1
x − 1 = ±2
x + 2 = ±4
3x + 2 = ±5

Let’s think of these as equation pairs:

x + 1 = 1 or x + 1 = −1
x − 1 = 2 or x − 1 = −2
x + 2 = 4 or x + 2 = −4

3x + 2 = 5 or 3x + 2 = −5

When we solve these four pairs of first-degree equations, we get the following results, which 
are the roots of the original quadratics:

x = 0 or x = −2
x = 3 or x = −1
x = 2 or x = −6

x = 1 or x = −7/3

We can write the solution sets respectively as {0,−2}, {3,−1}, {2,−6}, and {1,−7/3}. I’ll let you 
plug these values into the original quadratics to be sure we’ve found the right roots! Here are 
the original quadratics once again, in order:

x 2 + 2x + 1 = 1
x 2 − 2x + 1 = 4
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x 2 + 4x + 4 = 16
9x 2 + 12x + 4 = 25

Morphing into a perfect square

When we come across a quadratic equation in polynomial standard form, we can sometimes 
add a positive real number to both sides, getting a perfect square on the left side. That will 
leave us with a nonzero value on the right, but as long as the left side is a perfect square, we 
can solve the equation just as we did in the four cases above. We can take the first quadratic 
from the above list and subtract 1 from each side, getting

x 2 + 2x = 0

We can take the second equation and subtract 4 from each side, getting

x 2 − 2x − 3 = 0

In the third equation, we can subtract 16 from each side to obtain

x 2 + 4x − 12 = 0

Finally, in the fourth equation, we can take 25 away from each side and get

9x 2 + 12x − 21 = 0

If you add the right constants to both sides of each of these equations, you’ll get quadratics 
with perfect squares on their left-hand sides.

Are you confused?
Now that we’ve taken four solutions and manufactured four problems from them, let’s retrace our steps 
and get the solutions back. In this way, we can get a good “feel” for how completing the square actually 
works. Imagine that we’re confronted with the following four quadratics in polynomial standard form:

x 2 + 2x = 0

x 2 − 2x −3 = 0

x 2 + 4x − 12 = 0

9x 2 + 12x − 21 = 0

We can take the first of these equations and add 1 to each side, getting

x 2 + 2x + 1 = 1

That gives us a perfect square on the left side. (Recognizing perfect squares when they appear in polynomial 
form is a “sixth sense” that evolves over time, and it takes practice to develop it.) Factoring, we obtain

(x + 1)2 = 1



We can take the square root of both sides and get

x + 1 = ±1

which can be expressed as the pair

x + 1 = 1 or x + 1 = −1

The solutions are found to be x = 0 or x = −2, so the solution set is {0,−2}. The other three equations can 
be worked out in similar fashion.

Are you still confused?
Do you wonder what happens if, in order to complete the square in a quadratic, you must subtract a posi-
tive number from both sides, getting a negative number on the right side? That’s a good question. In that 
case, the roots turn out to be imaginary or complex. We’ll deal with such equations in Chap. 23.

Here’s a challenge!
Go through maneuvers similar to those we just completed, but with the second, third, and fourth quadrat-
ics from above:

x 2 − 2x −3 = 0

x 2 + 4x − 12 = 0

9x 2 + 12x − 21 = 0

Solution
You’re on your own! Start with perfect squares on the left sides of the equals signs and positive numbers on 
the right, and then take away those positive numbers from both sides to “unsquare” the equations.

The Quadratic Formula
The technique of completing the square can be applied to the general polynomial standard 
form of a quadratic equation. This gives us a tool for solving quadratics by “brute force”: the 
so-called quadratic formula.

Deriving the formula

Remember the polynomial standard form where x is the variable, and a, b, and c are real-
number constants with a ≠ 0. The general formula is

ax 2 + bx + c = 0

Let’s rewrite this as

ax 2 + bx = −c
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Because a ≠ 0 in any quadratic equation, we can divide each side by a, getting

x 2 + (b /a)x = −c /a

It’s tempting to think that there must be some constant that we can add to both sides of this 
equation to get a perfect square on the left side of the equals sign. It takes some searching, but 
that constant does exist. It is b 2/(4a 2). When we add it to both sides of the above equation, 
we obtain

x 2 + (b /a)x + b 2/(4a 2) = −c /a + b 2/(4a 2)

We can now factor the left side into the square of a binomial to get

[x + b /(2a)]2 = −c /a + b 2/(4a 2)

The two terms in the right side of this equation can be added using the sum of quotients rule 
from Chap. 9 to obtain

[x + b /(2a)]2 = (−4a 2c + ab 2) / (4a 3)

Canceling out the extra factors of a in the numerator and denominator on the right side, we get

[x + b /(2a)]2 = (−4ac + b 2) / (4a 2)

Let’s rewrite the numerator on the right side as a difference, so the equation becomes

[x + b /(2a)]2 = (b 2 − 4ac) / (4a 2)

If we take the square root of both sides here, remembering the negative as well as the positive, 
we get

x + b /(2a) = ±[(b 2 − 4ac) / (4a 2)]1/2

The denominator in the right side is a perfect square; it’s equal to (2a)2. Therefore, we can 
simplify the expression on that side of the equals sign a little bit, considering it as a ratio of 
square roots rather than the square root of a ratio. We obtain

x + b /(2a) = ±(b 2 − 4ac)1/2 / (2a)

If we subtract b /(2a) from both sides, we get

x = ±(b 2 − 4ac)1/2 / (2a) − b /(2a)

which expresses x in terms of the constants a, b, and c (finally!). An equation that states the 
general solution to an unknown is called a formula.



We’re not quite done yet, because this formula can be simplified. We have a common 
denominator, 2a, in the difference of the two ratios on the right side. We can therefore rewrite 
the above formula as

x = [±(b 2 − 4ac)1/2 − b ] / (2a)

In most texts, the numerator is written with −b first, like this:

x = [−b ± (b 2 − 4ac)1/2] / (2a)

An example

Now it’s time to solve a specific equation using the quadratic formula. Let’s try this: 

9x 2 + 12x − 21 = 0

In this case, we have a = 9, b = 12, and c = −21. We can plug these numbers into the quadratic 
formula and grind it out:

 x = [−b ± (b 2 − 4ac)1/2] / (2a)
 = {−12 ± [122 − 4 × 9 × (−21)]1/2} / (2 × 9)
 = {−12 ± [144 − (−756)]1/2} / 18
 = (−12 ± 9001/2) / 18
 = (−12 ± 30) / 18
 = (−12 + 30) / 18 or (−12 − 30) / 18
 = 18/18 or −42/18
 = 1 or −7/3

The solution set is therefore {1,−7/3}. You can check these roots by plugging them back into 
the original equation.

Another example

Now let’s see what happens when we solve this equation with the quadratic formula:

4x 2 − 24x + 36 = 0

Here, we have a = 4, b = −24, and c = 36. Plugging in and grinding out, we obtain

 x = [−b ± (b 2 − 4ac)1/2] / (2a)
 = {−(−24) ± [(−24)2 − 4 × 4 × 36]1/2} / (2 × 4)
 = [24 ± (576 − 576)1/2}/ 8
 = (24 ± 01/2}/ 8
 = 24/8
 = 3

The solution set is {3}. There is only one root. Feel free to check it!
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The discriminant

In the second example above, b 2 − 4ac = 0. In that case, it doesn’t matter whether we add 
(b 2 − 4ac)1/2 to −b or subtract (b 2 − 4ac)1/2 from –b in the formula. This gives us a quick way 
to tell whether a quadratic equation has two roots or only one. The quantity b 2 − 4ac is called 
the discriminant of the general quadratic equation

ax 2 + bx + c = 0

If the discriminant is a positive real number, then the associated quadratic has two real roots. 
If the discriminant is equal to 0, then the quadratic has one real root with multiplicity 2.

There are plenty of quadratic equations in which the discriminant is a negative real num-
ber. Here’s an example:

4x 2 − 4x + 36 = 0

This is almost exactly the same equation as we solved in the second example above. The only 
difference is that the second coefficient is 4 rather than 24. The discriminant here is

 b 2 − 4ac = 42 − 4 × 4 × 36
 = 16 − 576
 = −560

When we apply the quadratic formula, we must take the square root of −560. That’s an imagi-
nary number! A negative discriminant gives us imaginary or complex roots. We’ll explore 
situations like this in the next chapter. We’ll also see what happens when one or more of the 
coefficients in a quadratic equation are imaginary or complex.

Are you confused?
Do you wonder how we came up with the constant b 2/(4a 2) to make a perfect square in the process of 
deriving the quadratic formula? Again, this is the “sixth sense” at work, a form of intuition that you can 
develop only with practice.

Here’s a challenge!
In the derivation of the quadratic formula, we made a “quantum leap” when we claimed that the polynomial

x 2 + (b /a)x + b 2/(4a 2)

is a perfect square that can be factored into

[x + b /(2a)]2

Show that this is actually true.



Solution
We can work it the other way, multiplying the factors out to get the polynomial. Let’s rewrite the above 
squared binomial as a product of sums, like this:

[x + b /(2a)] [x + b /(2a)]

When we apply the product of sums and product of quotients rules from Chap. 9, this becomes

x 2 + xb /(2a) + xb /(2a) + b 2/(4a 2)

We can add the two middle terms together, getting

x 2 + 2xb /(2a) + b 2/(4a 2)

Canceling out the 2 in the numerator and denominator of the middle term, we obtain

x 2 + xb /a + b 2/(4a 2)

which can also be written as

x 2 + (b /a)x + b 2/(4a 2)
That’s the original polynomial.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1. Multiply out the following equation, putting it into polynomial standard form.

(−7x − 5)(−2x + 9) = 0

 2.  Factor the following quadratic. Then find the roots and state the solution set. Here’s a 
hint: The coefficients and constants in the factors are all integers.

x 2 + 10x + 25 = 0

 3.  Factor the following quadratic. Then find the roots and state the solution set. Here’s a 
hint: The coefficients and constants in the factors are all integers.

2x 2 + 8x − 10 = 0

 4.  Factor the following quadratic. Then find the roots and state the solution set. Here’s a 
hint: The coefficients and constants in the factors are all integers.

12x 2 + 7x − 10 = 0
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 5.  Manipulate the following equation so it has the square of a binomial on the left side of 
the equals sign and 0 on the right side. Here’s a hint: The coefficient and constant in 
the binomial are both integers.

16x 2 − 40x + 25 = 0

 6.  What is the single root of the quadratic stated in Prob. 5? What is the solution set?

 7.  Manipulate the following equation so it has the square of a binomial on the left side 
of the equals sign and a positive real number on the right side. Here’s a hint: The 
coefficient and constant in the binomial are both integers.

x2 + 6x − 7 = 0

 8.  What are the roots of the quadratic stated in Prob. 7? What is the solution set?

 9.  How many real roots does the following quadratic have? Find the real root or roots, if 
any exist, using the quadratic formula. What is the real-number solution set?

−2x 2 + 3x + 35 = 0

10.  How many real roots does the following quadratic have? Find the real root or roots, if 
any exist, using the quadratic formula. What is the real-number solution set?

4x 2 + x + 3 = 0
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CHAPTER

2 3

Quadratic Equations 
with Complex Roots

Now that we know a little bit about what to expect when the discriminant of a quadratic equa-
tion is negative, let’s explore this territory in more detail. A negative discriminant indicates 
that the roots of a quadratic are imaginary or complex.

Complex Roots by Formula
The quadratic formula, like basic addition facts and multiplication tables, is worth commit-
ting to memory. (That’s why I keep repeating it. Here it is again!) When we have a quadratic 
equation of the form

ax 2 + bx + c = 0

then the roots can be found using the formula

x = [−b ± (b 2 − 4ac)1/2] / (2a)

Square root of the discriminant

The discriminant of a quadratic equation is equal to the square of the coefficient of x, minus 
4 times the product of the coefficient of x 2 and the stand-alone constant. In the quadratic 
formula as stated above, the discriminant d is

d = b 2 − 4ac

When the coefficients and constant in a quadratic are real numbers, then the discriminant 
is always a real number. If d > 0, then the square root of d can be either a positive real or its 
additive inverse. If d = 0, then the square root of d is 0. If d < 0, then the square root of d can 
be either of two values, one positive imaginary and the other negative imaginary.
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Let’s take an example. Suppose that we work out the discriminant d for a quadratic, and 
we find that d = −16. Then the positive square root of d is equal to j 4, and the negative square 
root of d is equal to −j4.

Here’s another example. Let’s revisit the quadratic stated in Practice Exercise 10 at the end 
of Chap. 22:

4x 2 + x + 3 = 0

In this case, a = 4, b = 1, and c = 3, so

 d = b 2 − 4ac
 = 12 − 4 × 4 × 3
 = 1 − 48
 = −47

The positive square root of −47 is j (471/2), and the negative square root is −j (471/2).
Now let’s look at the general case. If d < 0, then |d | > 0. (As you know, it also happens to 

be true that if d < 0, then |d | = −d, a fact that we’ll use later in this chapter.) We can express 
the positive square root of d as

d 1/2 = j (|d |1/2)

and we can express the negative square root of d as

−(d 1/2) = −j (|d |1/2)

Stated as a “plus-or-minus” expression, we have

±(d 1/2) = ± j (|d |1/2)

Substituting ±j (|d |1/2) in place of ±(b 2 − 4ac)1/2 in the quadratic formula, we get

x = [−b ± j (|d |1/2)] / (2a)

This equation can be used if and only if the real-number discriminant, d, is negative. It’s 
important to remember what “if and only if ” means in this context! We can always use this 
formula when d < 0. But we must never use it when d = 0 or when d > 0, because in those 
cases, the j operator does not belong there.

Imaginary roots: a specific case

Consider the following quadratic equation in which the coefficient of x 2 is positive, the coef-
ficient of x is equal to 0, and the stand-alone constant is positive:

3x 2 + 75 = 0



In the general polynomial standard form, we have a = 3, b = 0, and c = 75. The discriminant 
is therefore

 d = b 2 − 4ac
 = 02 − (4 × 3 × 75)
 = −900

The positive-or-negative square root of the discriminant is

 ±(d 1/2) = ±j (|−900|1/2)
 = ±j (9001/2)
 = ±j30

The roots can now be found as

 x = [−b ± j (|d |1/2)] / (2a)
 = (0 ± j30) / (2 × 3)
 = ±j30/6
 = ±j5

Are you astute?
Do you suspect that this particular equation can be solved more easily without resorting to the quadratic 
formula? If so, you’re right! If we subtract 75 from each side, we get

3x 2 = −75

Dividing through by 3 gives us

x 2 = −25

When we take the positive-or-negative square root of both sides, we obtain

 x = ±[(−25)1/2]
 = ±j5

Imaginary roots: the general case

Let’s see what happens with a general quadratic when the coefficient of x is 0. If we write it in 
polynomial standard form, we get

ax 2 + 0x + c = 0
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which simplifies to

ax 2 + c = 0

Subtracting c from each side gives us

ax 2 = −c

We can divide through by a because, in a quadratic, a is never 0. Doing that, we get

x 2 = −c /a

Taking the positive-or-negative square root of each side, we obtain

x = ±[(−c /a)1/2]

If a and c have opposite signs, then −c / a is positive. Therefore, the roots are both real and are 
additive inverses of each other:

x = (−c /a)1/2 or x = −[(−c /a)1/2]

If a and c have the same sign, then −c /a is negative. That means the roots are pure imaginary 
and are additive inverses of each other:

x = j (|−c /a|1/2) or x = −j (|−c /a|1/2)

In this case, the discriminant is

 d = b 2 − 4ac
 = 02 − 4ac
 = −4ac

Because a and c have the same sign, −4ac < 0. Therefore, d < 0.

Conjugate roots

The discriminant in a quadratic can be negative even when b, the coefficient of x, is not equal 
to 0. The only requirement is that 4ac be larger than b 2. Here’s an example:

(45/2)x 2 + 3x + 1 = 0

In this case, a = 45/2, b = 3, and c = 1, so we have

 4ac = 4 × (45/2) × 1
 = 90



and

 b 2 = 32

 = 9

Therefore,

 d = b 2 − 4ac
 = 9 − 90
 = −81

This tells us that the roots of the quadratic are not real numbers. To find the roots, we can plug 
in the value −81 for d in the “abbreviated discriminant” form of the quadratic formula:

 x = [−b ± j (|d |1/2)] / (2a)
 = [−3 ± j (|−81|)1/2] / [2 × (45/2)]
 = [−3 ± j (811/2)] / 45
 = (−3 ± j9) / 45
 = −3/45 ± j (9/45)
 = −1/15 ± j (1/5)

The roots are

x = −1/15 + j (1/5) or x = −1/15 − j (1/5)

These are complex conjugates. As things work out, the roots are always complex conju-
gates in a quadratic where d < 0, even when b ≠ 0. The solution set X in this example is

X = {−1/15 + j (1/5), −1/15 − j (1/5)}

Are you ambitious?
For complementary credit, plug the roots we’ve just found into the original quadratic to be sure that they 
work. You’re on your own. Here’s a hint: This is a messy process, but if you’re careful and patient, all the 
“garbage” will drop out in the end.

Are you confused?
The above derivations are abstract, but it’s important that you follow through them so you understand the 
reasoning behind each step. Here are the results, wrapped up into two statements. In any quadratic:

• If the discriminant is a negative real number and the coefficient of x is 0, then the roots are pure 
imaginary, and are additive inverses.

• If the discriminant is a negative real number and the coefficient of x is a nonzero real number, then 
the roots are not pure imaginary, but are complex conjugates.
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Here’s a challenge!
Prove the second of the above statements.

Solution
Consider once again the general polynomial equation

ax 2 + bx + c = 0

The discriminant is

d = b 2 − 4ac

Suppose that d < 0 and b ≠ 0. We can use the “abbreviated discriminant” version of the quadratic formula 
for complex roots:

x = [−b ± j (|d |1/2)] / (2a)

Applying the right-hand distributive rule for addition and subtraction “in reverse” to the right side, we can 
split that expression into a sum or difference of two ratios with a common denominator, like this:

x = −b /(2a) ± j (|d |1/2)/(2a)

Therefore, we can write the two roots as

x = −b /(2a) + j (|d |1/2)/(2a) or x = −b /(2a) − j (|d |1/2)/(2a)

The fact that these are complex conjugates is obscure because the expressions are messy. To bring things 
into focus, we can change a couple of names. Let

p = −b /(2a)

and

q = (|d |1/2)/(2a)

Now we can rewrite the roots as

x = p + jq or x = p − jq

These are complex conjugates (but not pure imaginary numbers) for all nonzero real numbers p and q.
You might ask, “Are p and q really both nonzero?” The answer is “Yes.” We can be sure that p ≠ 0 because 
b ≠ 0 and a ≠ 0, so −b /(2a) can’t be 0. We can be sure that q ≠ 0 because d ≠ 0 and a ≠ 0, so (|d |1/2)/(2a)
can’t be 0.



Imaginary Roots in Factors
Now that we’ve found a way to solve quadratics that have real coefficients, a real constant, and 
a negative real discriminant, let’s see what the factors of such equations look like. We’ll start 
with situations where the coefficient of x is 0, so the roots are pure imaginary.

A specific case

Consider again the quadratic equation we solved earlier, in which the roots are pure imaginary 
and additive inverses:

3x 2 + 75 = 0

We simplified this equation in the second version of the solution when we divided both sides 
by 3, obtaining

x 2 + 25 = 0

We found that the roots are j5 and −j5. Knowing these roots, it’s reasonable to think that we 
should be able to figure out what this equation looks like in binomial factor form. In one case, 
we have x = j5. If we take that equation and subtract j 5 from each side, we get

x − j5 = 0

In the other case, we have x = −j5. We can add j 5 to each side of that, getting

x + j5 = 0

This suggests that the binomial factor form of the quadratic is

(x − j5)(x + j5) = 0

The left side of this equation is 0 if and only if x = j5 or x = −j5. Let’s multiply it out and see 
what we get. To avoid confusion with the signs, we can rewrite the first term as a sum:

[x + (−j5)](x + j5) = 0

Applying the product of sums rule gives us

x 2 + x j 5 + (−j5x) + (−j5)( j5) = 0

Using the commutative law for multiplication in the third and fourth terms, we obtain

x 2 + x j 5 + (−x j 5) + (−j × j ) × 25 = 0

Note that −j × j = 1. Also, the second and third terms of the polynomial add up to 0. We can 
therefore simplify to get

x 2 + 25 = 0

Imaginary Roots in Factors  387



388 Quadratic Equations with Complex Roots

Multiplying through be 3 gives us

3x 2 + 75 = 0

That’s the original equation.

The general case

Consider a general quadratic in which the coefficient of x 2 is a positive real number a, the 
coefficient of x is 0, and the stand-alone constant is a positive real number c. Then we have

ax 2 + c = 0

Subtracting c from each side, we get

ax 2 = −c

Dividing through by a, which we know is not 0 because we’ve stated that it’s positive, we 
obtain

x 2 = −c /a

which can be rewritten as

x 2 = −1(c /a)

Because a and c are both positive, we know that the ratio c /a is positive as well. Its positive 
and negative square roots are therefore both real numbers. We can take the square root of both 
sides of the above equation, getting

 x = ±[−1(c /a)]1/2

 = ±(−1)1/2 [±(c /a)1/2]
 = ±j [(c /a)1/2]
 = j [(c /a)1/2] or −j [(c /a)1/2]

Knowing these roots, we can get the binomial factor form of the original quadratic. In 
one case,

x = j [(c /a)1/2]

If we subtract j [(c /a)1/2] from each side, we get

x − j [(c /a)1/2] = 0

In the other case,

x = −j [(c /a)1/2]



When we add j [(c /a)1/2] to each side, we get

x + j [(c /a)1/2] = 0

The binomial factor form of the original quadratic is therefore

{x − j [(c /a)1/2]}{x + j [(c /a)1/2]} = 0

To be sure this is the correct equation in binomial factor form, (that is, to be sure we haven’t 
made any mistakes!), we had better multiply out the left side. To avoid confusion with the 
signs, let’s rewrite the first term as a sum:

{x + (−j )[(c /a)1/2]}{x + j [(c /a)1/2]} = 0

Using the product of sums rule, we can expand to get

x 2 + x j [(c /a)1/2] + (−j )[(c /a)1/2]x + {−j [(c /a)1/2]}{j [(c /a)1/2]} = 0

Taking advantage of the commutative law for multiplication in the third and fourth terms, 
we can rewrite it as

x 2 + x j [(c /a)1/2] + {−x j [(c /a)1/2]} + (−j × j )(c /a) = 0

The second and third terms are additive inverses and −j × j = 1, so we can simplify this to

x 2 + c /a = 0

Multiplying through by a, we get

ax 2 + c = 0

which is the original quadratic.

Are you confused?
We’ve seen what happens in a quadratic when the coefficient of x 2 and the stand-alone constant are posi-
tive while the coefficient of x is equal to 0. You might ask, “What happens if they are both negative?” The 
answer is simple. If a < 0 and c < 0, then we can multiply the equation through by −1, and we’ll have the 
case where a > 0 and c > 0. For example, if we see

−2x 2 − 79 = 0

we can multiply each side by −1, getting

(−1) × (−2x 2 − 79) = −1 × 0
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which simplifies to

2x 2 + 79 = 0

Here’s a challenge!
Investigate what happens in the general case if a is positive and c is negative in the quadratic equation

ax 2 + c = 0

Solution
We have a > 0 and c < 0. That means −c > 0. Let’s rewrite the above equation as

ax 2 − (−c) = 0

We can add −c to each side, getting

ax 2 = −c

Dividing through by a, we obtain

x 2 = −c /a

Because −c > 0 and a > 0, we know that −c /a > 0. We can take the positive-negative square root of both 
sides to get

x = ±(−c /a)1/2

Stated separately, the roots are

x = (−c /a)1/2 or x = −[(−c /a)1/2]

These are both real numbers, and are additive inverses.

Here’s another challenge!
Investigate what happens in the general case if a is negative and c is positive in the quadratic equation

ax 2 + c = 0

Solution
We have a < 0 and c > 0. That means −a > 0. We can subtract c from each side, getting

ax 2 = −c

Multiplying through by −1 gives us

(−a)x 2 = c



Dividing through by (−a), we obtain

x 2 = c /(−a)

Because c > 0 and −a > 0, we know that c /(−a) > 0. We can take the positive-negative square root of both 
sides to get

x = ±[c /(−a)]1/2

which can be rewritten as

x = ±(−c /a)1/2

Stated separately, the roots are

x = (−c /a)1/2 or x = −[(−c /a)1/2]

These are the same roots we get if a > 0 and c < 0. Both roots are real, and they are additive inverses of 
each other.

Conjugate Roots in Factors
We’ve seen the binomial factor forms of quadratics where the roots are pure real or pure imagi-
nary. Now let’s look at the factors when the roots are complex conjugates, but are not pure 
imaginary numbers.

An example

We can use the quadratic formula to find the roots of a quadratic equation that has complex 
conjugate roots. Then we can generate the binomial factor form of the quadratic from those 
roots. Let’s try this:

5x 2 + 6x + 5 = 0

We have a = 5, b = 6, and c = 5 in the polynomial standard form. The discriminant is

 d = b 2 − 4ac
 = 62 − 4 × 5 × 5
 = 36 − 100
 = −64

The square root of the discriminant is pure imaginary:

 ±(d 1/2) = ±[(−8)1/2]
 = ±j8
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The roots are therefore

 x = [−b ± j (|d |1/2)] / (2a)
 = (−6 ± j8) / (2 × 5)
 = (−6 ± j8) / 10
 = −6/10 ± j (8/10)
 = −3/5 ± j (4/5)

Stated individually,

x = −3/5 + j (4/5) or x = −3/5 − j (4/5)

The binomial factor form of the original quadratic must therefore look like this:

{x − [−3/5 + j (4/5)]}{x − [−3/5 − j (4/5)]} = 0

We should multiply this out to be sure we have found the correct binomial factors. First, let’s 
convert the subtractions into negative additions, obtaining

{x + (−1)[−3/5 + j (4/5)]}{x + (−1)[−3/5 + (−j )(4/5)]} = 0

The distributive law for multiplication over addition lets us rewrite this as

{x + 3/5 + [−j (4/5)]}[x + 3/5 + j (4/5)] = 0

We now have two trinomial factors on the left side! We can multiply them out to get the equation

x 2 + (3/5)x + j (4/5)x
+ (3/5)x + (3/5)2 + j (3/5)(4/5)

+ (−j )(4/5)x + (−j )(4/5)(3/5) + (−j )( j )(4/5)2

= 0

Fortunately, we have some pairs of terms that cancel out, so we can simplify to

x 2 + (6/5)x + 9/25 + 16/25 = 0

and further to

x 2 + (6/5)x + 1 = 0

Multiplying both sides of this equation by 5 gives us the original quadratic in polynomial 
standard form:

5x 2 + 6x + 5 = 0



Are you confused?
If you wonder how the two trinomials in the above situation can be multiplied out, remember the rule 
you derived when you solved Practice Exercise 10 at the end of Chap. 9. If you’ve forgotten how that rule 
works, review it now. It can be extrapolated to all real, imaginary, and complex numbers.

Here’s a challenge!
Consider a general quadratic equation in polynomial standard form:

ax 2 + bx + c = 0

Suppose that b is not equal to 0. Also suppose that the discriminant, d, is negative, where

d = b 2 − 4ac

Write the general quadratic equation in factored form.

Solution
Let’s begin with the quadratic formula we obtained earlier in this chapter for cases of this sort:

x = [−b ± j (|d |1/2)] / (2a)

We can break the numerator apart and write this as the sum of two fractions with a common denominator:

x = −b /(2a) ± j (|d |1/2)/(2a)

The roots can be expressed separately like this:

x = −b /(2a) + j (|d |1/2)/(2a) or x = −b /(2a) − j (|d |1/2)/(2a)

This suggests that the factored form of the equation ought to be

{x − [−b /(2a) + j (|d |1/2)/(2a)]}{x − [−b /(2a) − j (|d |1/2)/(2a)]} = 0

Here’s another challenge!
Multiply out the factored equation we’ve just obtained, verifying that it’s equivalent to the original general 
quadratic in polynomial standard form.

Solution
We can simplify things if we temporarily rename two of the terms in the binomial. We’ll give them their 
“legitimate” names back later. Let 

p = −b /(2a)

and

q = (|d |1/2)/(2a)
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This makes the above factored equation look like this:

[x − (p + jq)][x − (p − jq)] = 0

To avoid making mistakes with signs, we can rewrite this as

[x + (−1)(p + jq)][x + (−1)(p − jq)] = 0

and then as

[x + (−p) + (−jq)][x + (−p) + jq] = 0

Using the multiplication rule for trinomials along with the commutative law for multiplication in some 
of the terms, we can expand this to

x 2 + (−px) + jqx

+ (−px) + (−p)2 + (−jqp)

+ (−jqx) + jqp + (−j )( j )q2 = 0

which simplifies to

x 2 + (−2px) + p 2 + q 2 = 0

Now let’s substitute the “legitimate” names for p and q back into this equation. That gives us

x 2 + {−2[−b /(2a)]x} + [−b /(2a)]2 + [(|d |1/2)/(2a)]2 = 0

which simplifies to

x 2 + (b /a)x + b 2/(4a 2) + |d |/(4a 2) = 0

Now remember that d = b 2 − 4ac. Because d is negative, its absolute value is equal to its additive inverse. 
The additive inverse of a difference (subtraction) can be obtained by switching the order of the terms on 
either side of the minus sign. Therefore,

|d | = 4ac − b 2

Let’s substitute the quantity (4ac − b 2) for |d | in the previous equation, getting

x 2 + (b /a)x + b 2/(4a 2) + (4ac − b 2)/(4a 2) = 0

We can combine the last two terms of this polynomial into a single fraction because we have the common 
denominator 4a 2. That gives us

x 2 + (b /a)x + (b 2 + 4ac − b 2)/(4a 2) = 0

which simplifies to

x 2 + (b /a)x + (4ac)/(4a 2) = 0



and further to

x 2 + (b /a)x + c /a = 0

Multiplying through by a, we obtain

ax 2 + bx + c = 0

which is the original general quadratic in polynomial standard form.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it! Note: Some of 
these problems take you a little beyond the material covered directly in the text of this chapter. 
Nevertheless, you should be able to solve them using the rules and techniques you’ve been 
taught so far. Be patient, and be careful with the signs and j operators!

 1. What are the roots of the following quadratic equation? What is the solution set X ?

(x − j7)(x + j7) = 0

 2. Convert the equation given in Prob. 1 into polynomial standard form.

 3.  Use the quadratic formula to find the roots of the polynomial equation as it is expressed 
in the solution to Prob. 2.

 4.  We haven’t dealt with quadratic equations in which the roots are pure imaginary but 
are not additive inverses. However, we can “manufacture” such an equation. Suppose 
we want the roots to be

x = j7 or x = −j3

  Write down the binomial factor form of a quadratic with these two roots.

 5.  Convert the equation from the solution to Prob. 4 into polynomial standard form.

 6.  Use the quadratic formula to find the roots of the polynomial equation as it is expressed 
in the solution to Prob. 5.

 7. What are the roots of the following quadratic equation? What is the solution set X ?

(x + 2 + j3)(x − 2 − j3) = 0

 8. Convert the equation given in Prob. 7 into polynomial standard form.

 9.  Plug the roots from the solution to Prob. 7 into the polynomial standard equation from 
the solution to Prob. 8, showing that those roots actually work.

10. Convert the following quadratic into polynomial standard form:

(j2x + 2 + j3)(−j5x + 4 − j5) = 0
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CHAPTER

24

Graphs of Quadratic 
Functions

When a quadratic equation is in polynomial standard form but the 0 on the right is 
replaced by another variable and then the sides are transposed, we have a quadratic function.
For example,

x 2 + 2x + 1 = 0

is a quadratic equation in x, but

y = x 2 + 2x + 1

is a quadratic function with the independent variable x and the dependent variable y.
The real roots (if any) of a quadratic equation are called zeros when we talk about the 

associated quadratic function. The zeros represent the values of the independent variable for 
which the dependent variable equals 0.

Two Real Zeros
A quadratic equation with real coefficients and a real constant can have two real roots, one real 
root, or no real roots. When a quadratic equation has two real roots, its associated quadratic 
function has two real zeros. When we graph such a function, it crosses the independent-
variable axis at two distinct points.

The parabola

When a quadratic function has real coefficients and a real constant, its graph is a curve called 
a parabola. Figure 24-1 shows several such graphs. All parabolas have a characteristic shape 
that’s easy to recognize. Some are “narrow” and others are “broad,” but the general contour is 
the same in them all. Some “hold water”; they are said to open upward or be concave upward.
Others “spill water”; they are said to open downward or be concave downward. The graph of a 
quadratic function always passes the “vertical-line test.”
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Parabola opens upward

Figure 24-2 shows a generic graph of a quadratic function of x with two real zeros, which 
we call r and s. At the points on the x axis where x = r and x = s, the parabola crosses. This 
parabola opens upward. Imagine that its quadratic function is

y = ax 2 + bx + c

The x-intercepts are r and s. They represent the roots of the equation

ax 2 + bx + c = 0

so they can be found using the quadratic formula. If r is the smaller of the two zeros and s is 
the larger, then

r = [−b − (b2 − 4ac)1/2] / (2a)

and

s = [−b + (b2 − 4ac)1/2] / (2a)

x

y

Figure 24-1 The graphs of quadratic functions with 
real coefficients and a real constant are 
always parabolas, and they always pass 
the “vertical-line test” for a function.
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Whenever a parabola opens upward, it has a single point at which it “bottoms out.” This 
point is called the absolute minimum of the graph. In a few moments, we’ll discover how this 
point can be located.

Parabola opens downward

Figure 24-3 shows a generic graph of a quadratic function of x with two real zeros, again 
called r and s. But this parabola opens downward. If r is the smaller of the two zeros and s is 
the larger, then

r = [−b + (b2 − 4ac)1/2] / (2a)

and

s = [−b − (b2 − 4ac)1/2] / (2a)

Note the subtle difference between these two equations and those for the case where the 
parabola opens upward! Because of this, the values of r and s are reversed, as compared to their 

x

y

x = r x = s
y = 0y = 0

y < 0

Absolute minimum

xmin = (r + s) / 2

Figure 24-2  Graph of a quadratic function with 
two real zeros when the coefficient 
of x 2 is positive. The parabola opens 
upward, crosses the x axis twice, and 
has an absolute minimum with y < 0.



values when the parabola opens upward. When a parabola opens downward, it has a single 
point at which it “peaks.” This point is called the absolute maximum.

Sometimes the term extremum is used in reference to an absolute maximum or an abso-
lute minimum in the graph of a function. It means, as you might guess, “absolute extreme 
value.” In a parabola, the extremum may also be called the vertex.

Alternative function notation

Sometimes a quadratic function is given a name such as f, and then its value is denoted 
by that name with the independent variable in parentheses afterward. For example, we 
might write

f (x) = x 2 + 2x + 1

instead of

y = x 2 + 2x + 1

x

y

x = r x = s
y = 0y = 0

y > 0

Absolute maximum

xmax = (r + s) / 2

Figure 24-3  Graph of a quadratic function with two 
real zeros when the coefficient of x 2 is 
negative. The parabola opens downward, 
crosses the x axis twice, and has an absolute 
maximum with y > 0.
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Are you confused?
By now, you might ask, “How can we can tell whether the parabola for a particular quadratic function opens 
upward or downward?” This is easy to figure out. If the coefficient of x 2 in the polynomial is larger than 0 
(that is, if a > 0 in the general form of the function), then the parabola opens upward. If a < 0, then the parab-
ola opens downward. If a = 0, then we don’t have a quadratic function at all, and its graph is not a parabola.

Finding the absolute minimum or maximum

When we know the x-intercepts of a quadratic function with two real zeros, it’s easy to find 
the x-value of the absolute minimum or maximum of its graph. It’s the arithmetic mean, or 
average, of the zeros r and s.

If a > 0 in the polynomial, then the parabola opens upward, and we have an absolute 
minimum somewhere. Let’s call its x-value xmin. Then

xmin = (r + s)/2

If a < 0, then the parabola opens downward, and it has an absolute maximum. If we call its 
x-value xmax, then again

xmax = (r + s)/2

To find the y-value of the absolute minimum or maximum, we can plug the x-value into the 
function once we’ve found it. A little arithmetic will give us the y-value. Then we can plot the 
point on a coordinate grid.

When we have plotted the two x-intercepts along with the extremum, we can draw a fair 
approximation of the parabola representing the quadratic function.

Here’s a challenge!
Consider the following quadratic function:

y = x 2 − 3x + 2

Determine whether the parabola for this function opens upward or downward. Then find the two real 
zeros, r and s. After that, find the x-value of the extremum. Then determine its y-value. Finally, plot the 
zeros and the absolute minimum or maximum, and draw an approximate curve through these three points 
that represents the graph of the function. 

Solution
The coefficient of x 2 is positive, so we know that the parabola opens upward. We’re lucky here because the 
polynomial equation factors into

(x − 1)(x − 2) = 0



The roots here are easily seen as x = 1 or x = 2. That means r = 1 and s = 2. Because the parabola opens 
upward, we should look for an absolute minimum. Its x-value is

 xmin = (r + s)/2

 = (1 + 2)/2

 = 3/2

To find the y-value, we plug 3/2 into the quadratic function and grind out the arithmetic:

 y = (3/2)2 − 3 × 3/2 + 2

 = 9/4 − 9/2 + 2

 = 9/4 − 18/4 + 8/4

 = (9 − 18 + 8) / 4

 = −1/4

Now we know that the coordinates of the absolute minimum are (3/2, −1/4). We also know that the points 
(1, 0) and (2, 0) lie on the parabola. Figure 24-4 shows these points. They’re close together, so it’s difficult 

Figure 24-4  Approximate graph of y = x 2 − 3x + 2, 
where the independent variable is x and the 
dependent variable is y. On both axes, each 
increment represents 1/4 unit.
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(0,2)

(1,0)
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Each axis increment
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Two Real Zeros  401



402 Graphs of Quadratic Functions

to get a clear picture of the parabola based on their locations. But we can find the y-intercept to help us 
draw the curve. When we plug the value 0 in for x, we get

 y = x 2 − 3x + 2

 = 02 − 3 × 0 + 2

 = 0 − 0 + 2

 = 2

This tells us that (0, 2) is on the curve. It is also shown in Fig. 24-4.

Here’s a trick!
The graph of a quadratic function is bilaterally symmetric with respect to a vertical line passing through the 
vertex. That means the right-hand side of the curve is an exact “mirror image” of the left-hand side. In the 
challenge we just finished, this fact can be useful. Once we’ve drawn an approximation of the left-hand 
side of the curve using the points (3/2, −1/4), (1, 0), and (0, 2), we can fill out the right-hand side without 
having to find another distant point there.

One Real Zero
When a quadratic equation has one real root, its quadratic function has one real zero. When we 
graph such a function, it has a single point in common with the independent-variable axis.

Parabola opens upward

Figure 24-5 shows a generic graph of a quadratic function of x with one real zero r. At the 
point (r, 0), the parabola is tangent to the x axis. Here, “tangent” means that the curve just 
brushes against the axis, touching it at a single point. If the quadratic function is

y = ax 2 + bx + c

then a > 0 because the parabola opens upward. The root of the equation

ax 2 + bx + c = 0

can be found using the quadratic formula. Because there is only one root, the discriminant in 
the quadratic formula must be 0. That means

b2 − 4ac = 0

Therefore

 r = [−b ± (b2 − 4ac)1/2] / (2a)
 = −b/(2a)



The absolute minimum is at the point (r, 0). The parabola seems to “sit upon” the x axis.

Parabola opens downward

Figure 24-6 illustrates the graph of another generic quadratic function with one real zero. Let’s 
call it r, as before. Also as before, the point (r, 0) on the parabola is tangent to the x axis. If 
the quadratic function is

y = ax 2 + bx + c

then a < 0 because the parabola opens downward. The root of the equation

ax 2 + bx + c = 0

can again be found using the quadratic formula. And just as before, the discriminant in the 
quadratic formula is equal to 0, so

r = −b /(2a)

x

y

x = r
y = 0

Absolute minimum

x = q
y = k

Line y = k
where k > 0

x = p
y = k

Figure 24-5  Graph of a quadratic function with one 
real zero when the coefficient of x 2 is 
positive. The parabola opens upward, is 
tangent to the x axis at a single point, and 
has an absolute minimum with y = 0. 
A line with the equation y = k, where 
k > 0, intersects the parabola twice.
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The absolute maximum is at the point (r, 0). The graph looks as if the parabola “hangs 
from” the x axis.

Are you confused?
In Figs. 24-5 and 24-6, you’ll notice horizontal lines with the equation y = k. You might ask, “Why are 
the lines there? How do we find the points where the lines intersect the parabolas? Why do we need 
the points?” The answer: “Curve construction!” The lines allow us to find points that help us draw 
approximations of the graphs, once we’ve found the zero point (r, 0) and have figured out whether 
the parabola opens upward or downward. If the parabola opens upward, we should choose a positive 
number for k. If the parabola opens downward, we should choose a negative number for k. Then we’ll 
know that the line y = k must intersect the parabola at two points. We can find the x-values of those 
points by letting y = k in the quadratic function, and then “cooking up” a new quadratic equation out 
of that:

ax 2 + bx + c = k

Figure 24-6  Graph of a quadratic function with one 
real zero when the coefficient of x 2 is 
negative. The parabola opens downward, 
is tangent to the x axis at a single 
point, and has an absolute maximum 
with y = 0. A line with the equation 
y = k, where k < 0, intersects the 
parabola twice.

x
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x = q
y = k

x = p
y = k

Line y = k
where k 0<

x = r
y = 0

Absolute
maximum



This can be rearranged to get

ax 2 + bx + (c − k) = 0

which we can solve with the quadratic formula. The roots of this quadratic, which we’ll call p and q, are 
the x-values of the two points where the parabola intersects the horizontal line y = k. By doing all this, we 
learn the coordinates of three points that lie on the parabola. Those points are (p, k), (q, k), and (r, 0). If 
we’ve chosen the value of k wisely (made a lucky guess), we’ll have three well-separated points, and we’ll 
have an easy time drawing an approximation of the parabola.

Here’s a challenge!
Look at the following quadratic function:

y = −4x 2 + 12x − 9

Find the zero or zeros. Determine whether the parabola for this function opens upward or downward. 
Find the x-value and the y-value of the extremum. Then find two more points so the curve can be drawn. 
Finally, draw an approximation of the curve.

Solution
We can find the zero or zeros of the function by applying the quadratic formula to the equation

−4x 2 + 12x − 9 = 0

In the general polynomial equation

ax 2 + bx + c = 0

we have a = −4, b = 12, and c = −9. When we plug these into the quadratic formula, we get

 x = [−b ± (b2 − 4ac)1/2] / (2a)

 = {−12 ± [122 − 4 × (−4) × (−9)]1/2} / [2 × (−4)]

 = [−12 ± (144 − 144)1/2] / (−8)

 = (−12 ± 02) / (−8)

 = −12/(−8)

 = 3/2

The equation has only one root, so the function has only one zero. If we call it r, then we have 
r = 3/2, and we know that the point (3/2, 0) is on the parabola. We also know that this point repre-
sents the extremum. The value of a, the coefficient of x 2 in the polynomial, is negative. That means 
the parabola opens downward, so (3/2, 0) is the absolute maximum, and the parabola “hangs from 
the x axis.” We can choose a negative number k and set it equal to y, getting a horizontal line that 
crosses the parabola twice. Let’s try −5 for k, as shown in Fig. 24-7. The equation of the line is y = −5. 
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To find the x-values of the points where the line crosses the parabola, we have a new quadratic equa-
tion to solve:

−4x 2 + 12x − 9 = −5

We can put this into polynomial standard form by adding 5 to each side, getting

−4x 2 + 12x − 4 = 0

The quadratic formula tells us that the roots of this equation are

 x = [−b ± (b2 − 4ac)1/2] / (2a)

 = {−12 ± [122 − 4 × (−4) × (−4)]1/2} / [2 × (−4)]

 = [−12 ± (144 − 64)1/2] / (−8)

 = [−12 ± 801/2] / (−8)

Figure 24-7  Approximate graph of y = −4x 2 + 12x − 9, 
where the independent variable is x and the 
dependent variable is y. On both axes, each 
increment represents 1/2 unit.
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y

(3/2,0)
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approximate

(21/8,–5) where
x-value is
approximate

Line y = –5



Our goal is to find the coordinates of points so we can draw an approximation of the parabola. We can’t get 
perfection with pencil and paper, so we don’t need exact values for the coordinates. If we can get within 
1/10 of a unit, that ought to be good enough. When we use a calculator to find 801/2, we get roughly 
8.944. That’s so close to 9 that it won’t make a difference, when we draw the curve on paper, if we call it 
9. So let’s continue with our arithmetic, substituting 9 in for 801/2, as follows:

 x = (−12 ± 9) / (−8)

 = −3/(−8) or −21/(−8)

 = 3/8 or 21/8

These represent the approximate x-values of the points where the horizontal line intersects the parabola 
in Fig. 24-7. The y-values are exactly equal to −5 for both points. We can plot the points as (3/8, −5)
and (21/8, −5). We’ve already determined that (3/2, 0) is on the curve, and that it represents the absolute 
maximum. With these three points put down on our graph paper, we can fill in an approximation of the 
parabola.

No Real Zeros
When a quadratic equation has no real roots and its associated quadratic function has no 
real zeros, its graph is a parabola, but the curve lies entirely on one side of the independent-
variable axis.

Parabola opens upward

Figure 24-8 is a generic graph of a quadratic function of x with no real zeros. The parabola 
does not cross the x axis anywhere. The curve has an absolute minimum that lies in the first 
or second quadrant. If the quadratic function is

y = ax 2 + bx + c

then a > 0 in this example, because the parabola opens upward.
It’s reasonable to wonder, “Where do we start locating points on the curve in situations 

like this?” The task doesn’t look easy at first, but we can find the x-value of the absolute mini-
mum point. If we call that value xmin, then 

xmin = −b /(2a)

The y-value of the absolute minimum point, ymin, is whatever we get when we plug xmin into 
the function:

ymin = axmin
2 + bxmin + c

Once we’ve found the coordinates of the absolute minimum, we can find the coordinates 
of two other points. We can pick a number p somewhat smaller than xmin, and we can pick 
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another number q somewhat larger than xmin. We can choose integers for these numbers to 
make the arithmetic easy. The numbers p and q don’t have to be equally smaller and larger 
than xmin, although we should try to get close to that ideal. Once we’ve chosen the numbers 
p and q, we can plug them into the function for x and find two more points on the curve. 
Then the parabola is easy to draw.

Are you astute?
Do you wonder why we didn’t use the “x-value first” point-finding strategy earlier in this chapter for 
quadratic functions with one or two real zeros? “Isn’t it easier,” you might ask, “to choose a clean integer 
x-value for a point, and figure the y-value by plugging into the function? Isn’t that better than picking a 
y-value and then grinding through the quadratic formula to get two x-values that are likely to come out 
irrational?” You tell me! By choosing x-values first, we have to go through the arithmetic twice, but it’s 
usually simple. By choosing the y-value first, the arithmetic can be a little rough, but we only have to do it 
once. It’s your choice. Either method will work fine.

Figure 24-8  Graph of a quadratic function with no real 
zeros when the coefficient of x 2 is positive. 
The parabola opens upward, does not 
cross the x axis, has an absolute minimum 
with an x-value equal to −b/(2a), and has a 
positive y-value.
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Parabola opens downward

Figure 24-9 is another generic graph of a quadratic function of x with no real zeros. Again, the 
parabola does not cross the x axis. The curve has an absolute maximum in the third or fourth 
quadrant. If the function is

y = ax 2 + bx + c

then a < 0 because the parabola opens downward. The x-value of the absolute maximum 
point, xmax, is

xmax = −b/(2a)

The y-value of the absolute maximum point, ymax, is

ymax = axmax
2 + bxmax + c

Once we’ve found the coordinates of the vertex, we can find the coordinates of two other 
points. We can pick a number p smaller than xmax, and we can pick another number q larger 
than xmax. We can then plug p and q into the function for x to find two more points on the 
curve. Then the parabola is easy to draw.

Figure 24-9  Graph of a quadratic function with no real 
zeros when the coefficient of x 2 is negative. 
The parabola opens downward, does not 
cross the x axis, has an absolute maximum 
with an x-value equal to −b/(2a), and has a 
negative y-value.
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Are you confused?
We’ve made a substantial claim: The x-value of the extremum for a quadratic function

y = ax 2 + bx + c

is equal to −b/(2a) when there are no real zeros. This holds true whether the parabola opens upward or 
downward. It’s also true for quadratic functions that have one or two real zeros. Do you wonder how we 
know this? I haven’t proven it or even derived it in a general way.

This fact comes out of a maneuver that requires differential calculus. We won’t get into calculus in this 
book, but the approach can be explained qualitatively. It involves finding the point on the parabola where 
a line tangent to the curve has a slope of 0. That’s the point where the curve is “locally horizontal,” and 
it’s always the vertex in a quadratic function with real coefficients and a real constant. If you look at all the 
graphs in this chapter, you’ll see that a straight line drawn tangent to the curve, and passing through the 
vertex, is always horizontal. Differential calculus gives us a formula for the slope m of a quadratic function 
at any point based on the x-value at that point:

m = 2ax + b

If we set m = 0 to make the slope horizontal, we get

0 = 2ax + b

That’s a first-degree equation in x. When we solve it, we get

x = −b/(2a)

Here’s a challenge!
Consider the following quadratic function with no real zeros:

y = 2x 2 + 4x + 3

Find out whether the parabola for this function opens upward or downward. After that, find the x-value 
and the y-value of the extremum. Then locate two other points on the curve, and draw an approximation 
of the parabola representing the function.

Solution
This parabola opens upward, because the coefficient of x 2 is positive. That means it has an absolute mini-
mum. Remember again the general polynomial form for a quadratic function:

y = ax 2 + bx + c

The x-value at the absolute minimum point is

 xmin = −b/(2a)

 = −4 / (2 × 2)

 = (−4)/4

 = −1



The y-value at the absolute minimum point is

 ymin = 2xmin
2 + 4xmin + 3

 = 2 × (−1)2 + 4 × (−1) + 3

 = 2 − 4 + 3

 = −2 + 3

 = 1

From this, we know that the coordinates of the vertex are (−1,1). As the basis for our next point, let’s 
choose x = −3. That’s 2 units smaller than the x-value of the absolute minimum. We can plug that into 
the function to get

 y = 2x 2 + 4x + 3

 = 2 × (−3)2 + 4 × (−3) + 3

 = 18 − 12 + 3

 = 6 + 3

 = 9

This gives us (−3, 9) as the coordinates of a second point on the curve. Finally, let’s pick an x-value that’s 
2 units larger than xmin; that would be x = 1. Plugging it in, we obtain

Figure 24-10  Approximate graph of y = 2x 2 + 4x + 3. 
On both axes, each increment represents 
1 unit.

x

y

(–3,9) (1,9)
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(–1,1)
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 y = 2x 2 + 4x + 3

 = 2 × 12 + 4 × 1 + 3

 = 2 + 4 + 3

 = 9 

The third point is therefore (1, 9). We now have three points on the curve: (−3, 9), (−1, 1), and (1, 9). 
Figure 24-10 shows these points along with an approximation of the parabola passing through them.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1. Examine this quadratic function:

y = (x − 3)(4x − 1)

  Does the parabola representing the graph of this function open upward or downward?

 2. What are the real zeros, if any, of the function stated in Prob. 1?

 3.  What are the coordinates of the point representing the extremum of the function stated 
in Prob. 1?

 4. Draw an approximate graph of the function stated in Prob. 1.

 5.  The graph of the following quadratic function lies entirely above the x axis. How can 
we know this without plotting any points?

y = 7x 2 + 5x + 2

 6.  What are the coordinates of the vertex point on the parabola representing the function 
stated in Prob. 5?

 7. Consider the following quadratic function:

y = −2x 2 + 2x − 5

  Does the parabola representing the graph of this function open upward or downward?

 8. What are the real zeros, if any, of the function stated in Prob. 7?

 9.  What are the coordinates of the point representing the vertex of the parabola for the 
function stated in Prob. 7?

 10. Draw an approximate graph of the function stated in Prob. 7.
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CHAPTER

25

Cubic Equations 
in Real Numbers

Let’s move into single-variable cubic equations, also called cubics or third-degree equations. This 
type of equation always has a term in which the variable is cubed. There may also be a term 
with the variable squared, a term with the variable itself (to the first power), and a stand-alone 
constant. We’ll be concerned only with the real-number roots of single-variable cubics having 
real coefficients and a real constant.

Cube of Binomial
Some cubics can be expressed as the cube of a binomial with a real coefficient and a real con-
stant. Cubics in this form are easy to solve. They have one real root, which can be derived from 
the binomial by setting it equal to zero.

Binomial-cubed form

Suppose x is a variable, a is the nonzero real-number coefficient of the variable, and b is a real-
number constant. Consider the expression

(ax + b)3

If we set this equal to 0, we get

(ax + b)3 = 0

This is a cubic equation in binomial-cubed form. Here are three examples:

x 3 = 0
(x + 3)3 = 0
(2x − 3)3 = 0
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In the first case, the stand-alone constant is 0. If we want to be formal, we can write

(x + 0)3 = 0

In the second case, the coefficient of x in the binomial is 1 and the stand-alone constant is 3. 
In the third case, the coefficient of x in the binomial is 2, and the constant is −3.

Multiplying out

Now look at the last equation shown in the above set of three. We can multiply it out so the 
left side becomes a polynomial. First, we can rewrite it as

(2x − 3)(2x − 3)(2x − 3) = 0

Then we can multiply the second two factors using the product of sums rule. (Remember that 
subtraction is the same as the addition of a negative.) The result is

(2x − 3)(4x 2 − 12x + 9) = 0

If we multiply again using the expanded product of sums rule, consolidate the terms for x 2

and x, and pay close attention to the signs, we get

8x 3 − 36x 2 + 54x − 27 = 0

What’s the real root?

A single-variable equation in binomial-cubed form has one real root, assuming the coefficient 
and the constant are both real numbers. That root can be found by taking away the exponent 
from the binomial, and then solving the first-degree equation that remains. In general, if we 
have the third-degree equation

(ax + b)3 = 0

then the real root is the solution to

ax + b = 0

That solution is obtained by subtracting b from both sides, and then dividing through by a.
We can get away with division by a, because a ≠ 0. Therefore, the single real root to the cubic is

x = −b /a

Are you confused?
Simple cubics can sometimes look complicated, and complicated cubics can sometimes look simple. We 
often cannot know by glancing at a third-degree equation whether solving it will be easy, challenging, or 
difficult. The following example can illustrate.



Here’s a challenge!
Solve the following cubic equation, and discover that the real-number root is an integer:

(31/2x − 121/2)3 = 0 

Solution
Remember that the 1/2 power of a number is the positive square root. The above equation is therefore not 
ambiguous. It’s a legitimate cubic equation in x, because the 1/2 powers involve only the coefficient and 
the constant, not the variable x itself. Both the coefficient and the stand-alone constant are irrational, so 
this equation looks difficult! But for the moment, let’s forget about that. We can solve it using the above 
general formula. We have a = 31/2 and b = −(121/2). Therefore

 x = −b /a

 = −[−(121/2)] / 31/2

 = 121/2 / 31/2

Using the power of quotient rule from Chap. 9, we can simplify this root and then reduce it to an integer:

 x = 121/2 / 31/2

 = (12/3)1/2

 = 41/2

 = 2

We should check to be sure that this root really works in the original equation! Let’s plug it in and 
find out:

(31/2x − 121/2)3 = 0

(31/2 × 2 − 121/2)3 = 0

(31/2 × 41/2 − 121/2)3 = 0

Using the power of product rule from Chap. 9, we can simplify this to

[(3 × 4)1/2 − 121/2]3 = 0

(121/2 − 121/2)3 = 0

03 = 0
 0 = 0

Three Binomial Factors
When a cubic equation can be expressed as three binomial factors, those factors are rarely all 
the same. Two of them might be identical, but often all three are different. Cubics of this sort 
are in binomial-factor form.
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Binomial-factor form

Here’s the general form of a cubic broken down into three binomial factors, assuming that the 
equation can be expressed that way with real coefficients and real constants:

(a1x + b1)(a2x + b2)(a3x + b3) = 0

The three coefficients are a1, a2, and a3. They must all be nonzero, so the multiplied-out equa-
tion contains a nonzero multiple of x 3. The three stand-alone constants are b1, b2, and b3. Here 
are some examples of binomial-factor cubics:

(x − 1)(x + 2)(x − 3) = 0
(3x + 2)(5x + 6)(−7x − 1) = 0

x (x + 6)(x + 8) = 0
x 2(−4x − 1) = 0

The third and fourth of these equations have one and two stand-alone constants equal to 0, 
respectively. In “unabridged” binomial-factor form, these equations are

(x + 0)(x + 6)(x + 8) = 0

and

(x + 0)(x + 0)(−4x − 1) = 0

Multiplying out

We’re fortunate if we can reduce a cubic to three binomial factors. Consider the equation

x 3 − 2x 2 − 5x + 6 = 0

This doesn’t advertise that it can be factored into a product of binomials! But try multiplying 
this out:

(x − 1)(x + 2)(x − 3) = 0

Let’s work an example backward. Start with this:

x (x + 6)(x + 8) = 0

If we multiply the first factor by the second, we obtain

(x 2 + 6x)(x + 8) = 0

Multiplying these two factors out gives us

x 3 + 14x 2 + 48x = 0



Imagine that we were presented with the above equation for the first time, and we had 
never seen it in factored form. We could factor x out, getting

x (x 2 + 14x + 48) = 0

We could try to break up the trinomial part of this equation into binomial factors. With a 
few trials and errors, we’d find them. We would notice that the stand-alone constants must 
add up to 14 and multiply to 48; it wouldn’t take us long to guess that they are 6 and 8. Once 
we had the three binomial factors of the cubic, finding the real roots would be easy, as the 
next example will show. Even if we couldn’t factor the trinomial, we could attack it with the 
quadratic formula. Later, we’ll see an example of that tactic.

What are the real roots?

To see how we can solve a binomial-factor cubic with real coefficients and a real constant, let’s 
find the real roots of 

(3x + 2)(5x + 6)(−7x − 1) = 0

To find the first real root, we solve the equation created by setting the first binomial factor 
equal to 0. That equation is

3x + 2 = 0

Subtracting 2 from each side and then dividing through by 3, we get x = −2/3. To find the 
second real root, we do the same thing with the second binomial factor. We have

5x + 6 = 0

Subtracting 6 from each side and then dividing through by 5, we get x = −6/5. To find the 
third real root, we solve the equation

−7x − 1 = 0

Adding 1 to each side and then dividing through by −7, we get x = 1/(−7) = −1/7. The real 
roots of the original cubic are therefore

x = −2/3 or x = −6/5 or x = −1/7

and the solution set X is {−2/3, −6/5, −1/7}. In Practice Exercises 3 and 4 at the end of this 
chapter, you’ll multiply out the factors of the original cubic, and then test these roots in the 
resulting equation.

Are you confused?
You might wonder, “Why not divide the following equation through by x in an attempt to simplify and 
solve it?”

x 3 + 14x 2 + 48x = 0
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That’s a reasonable question. Dividing through by x can “knock the equation down” from third degree to 
second degree—or so we might be tempted to believe. Let’s try it and see what happens! We get

(x 3 + 14x 2 + 48x ) / x = 0/x

which apparently simplifies to

x 3/x + 14x 2/x + 48x/x = 0

and further to

x 2 + 14x + 48 = 0

This is a quadratic that can be factored into

(x + 6)(x + 8) = 0

The roots x = −6 or x = −8 come out of this process. We conclude that the solution set X for the original 
cubic must be {−6, −8}. That’s easy, isn’t it? Not so fast! It’s also wrong, because it’s incomplete. Let’s find 
out how to get it right.

Here’s a challenge!
Solve the following cubic equation in a way that works properly:

x 3 + 14x 2 + 48x = 0

Solution
We’ve seen this equation in its binomial factor form. Suppose that we could look at the above equation and 
see the binomial factor version immediately:

x (x + 6)(x + 8) = 0

To find the first root, we can take literally the simple first-degree equation

x = 0

To find the second root, we take the first-degree equation

x + 6 = 0

which resolves to x = −6. To find the third root, we take the first-degree equation

x + 8 = 0

which resolves to x = −8. The real roots of the cubic are therefore

x = 0 or x = −6 or x = −8



and the solution set X is {0, −6, −8}. A new root shows up this time: x = 0! The fact that one of the roots 
is 0 caused us to inadvertently divide by 0 when we divided the equation through by x. This “blinded” us 
to the existence of that root.

Binomial Times Trinomial
When a cubic can be expressed as a binomial multiplied by a trinomial, the equation is in 
binomial-trinomial form. (Actually, I’ve never seen that expression used in other texts. But it’s 
easy to remember, don’t you think?) A cubic in this form is not particularly difficult to solve 
for real roots. The technique shown in this section will also reveal the complex-number roots 
of a cubic equation, if any such roots exist.

Binomial-trinomial form

Suppose that a1 and a2 are nonzero real numbers. Also suppose that b1, b2, and c are real num-
bers, any or all of which can equal 0. The binomial-trinomial form of a cubic equation in the 
variable x can be written as follows: 

(a1x + b1)(a2x2 + b2x + c) = 0

Here are some examples of cubics in the binomial-trinomial form:

(−4x − 3)(−7x 2 + 6x − 13) = 0

 (3x + 5)(16x 2 − 56x + 49) = 0

           (3x)(4x 2 − 7x − 10) = 0

         (−21x + 2)(3x 2 − 14) = 0

In the third case above, the stand-alone constant is 0 in the binomial. In the fourth case, the 
coefficient of x is 0 in the trinomial.

Multiplying out

Let’s take a specific example of a cubic in binomial-trinomial form and multiply it out. Here’s 
a good one, with plenty of sign changes to make it interesting:

(−4x − 3)(−7x 2 + 6x − 13) = 0

Using the expanded product of sums rule, we obtain

28x 3 − 24x 2 + 52x + 21x 2 − 18x + 39 = 0

Consolidating the terms for x 2 and x, we get

28x 3 − 3x 2 + 34x + 39 = 0

Binomial Times Trinomial  419



420 Cubic Equations in Real Numbers

What are the real roots?

The process of finding the real roots of a cubic in the binomial-trinomial form is straightforward, 
as long as all the coefficients and constants are real numbers. First, we “manufacture” a first-degree 
equation from the binomial, setting it equal to 0. In the general form above, that would be

a1x + b1 = 0

which solves to

x = −b1/a1

This will always give us one real root for the cubic. After that, we set the trinomial equal to 0, 
obtaining a quadratic equation. In the general form shown above, we get

a2x 2 + b2x + c = 0

We can find the real roots of this equation, if any exist, using techniques we’ve already learned 
for solving quadratics. (I like to use the quadratic formula, because it always works! Also, if the 
root or roots are complex but not real, the quadratic formula will produce them.) Expressed 
for the above general equation, the quadratic formula is

x = [−b2 ± (b2
2 − 4a2c)1/2] / (2a2)

Are you confused?
You’ve learned that a quadratic equation can have two different real roots, or only one real root, or none 
at all. How about cubics? You’ve already seen an example of a cubic with three real roots. You’re about to 
see that a cubic equation in the binomial-trinomial form with real coefficients and a real constant can have 
two real roots. Then you’ll discover that a cubic in the binomial-trinomial form with real coefficients and 
a real constant can have only one real root, along with two others that are complex.

“Okay,” you say. Then you ask, “How about no real roots?” The answer: Any cubic in the binomial-
trinomial form with real coefficients and a real constant always has at least one real root. That’s because a 
first-degree equation can always be created from the binomial factor, and that equation always has a real 
solution. We can take this statement further: A cubic equation, no matter what the form, has at least one 
real root if all the coefficients and constants are real numbers.

Here’s a challenge!
Find the real roots of the following cubic equation using the method described in this section, and state 
the real solution set X.

(3x + 5)(16x 2 − 56x + 49) = 0

Solution
First, we can construct a first-degree equation by setting the binomial factor equal to 0. That gives us

3x + 5 = 0



Subtracting 5 from each side and then dividing through by 3, we get x = −5/3. Next, we apply the qua-
dratic formula to the trinomial factor. If we let a2 = 16, b2 = −56, and c = 49, then

 x = [−b2 ± (b2
2 − 4a2c)1/2] / (2a2)

 = {56 ± [(−56)2 − 4 × 16 × 49]1/2} / (2 × 16)

 = [56 ± (3,136 − 3,136)1/2] / 32

 = 56/32

 = 7/4

In this case, 7/4 is the only real root of the quadratic we obtain by setting the trinomial factor equal to 0. 
The original cubic therefore has two real roots:

x = −5/3 or x = 7/4 

and the real solution set X is {−5/3, 7/4}. The root x = 7/4 has multiplicity 2. In Practice Exercise 7 at the 
end of this chapter, you’ll check these roots.

Here’s another challenge!
Find the real roots of the following cubic equation using the approach described in this section, and state 
the real solution set X.

(−2x + 11)(2x 2 − 2x + 5) = 0

Solution
Our first step, as in the previous “challenge,” is to create a first-degree equation by setting the binomial 
factor equal to 0. That gives us

−2x + 11 = 0

When we subtract 11 from each side and then divide the entire equation through by −2, we get the solu-
tion x = −11/(−2), which is equal to 11/2. Then we apply the quadratic formula to the trinomial factor. If 
we let a2 = 2, b2 = −2, and c = 5, we have

 x = [−b2 ± (b2
2 − 4a2c)1/2] / (2a2)

 = {2 ± [(−2)2 − 4 × 2 × 5]1/2} / (2 × 2)

 = [2 ± (4 − 40)1/2] / 4

 = [2 ± (−36)1/2] / 4

We can stop right here, because the discriminant is negative. The quadratic we obtain by setting the 
trinomial factor equal to 0 has no real roots (although it has two complex roots). The original cubic 
therefore has only one real root, x = 11/2. The real solution set X contains only that single root, so 
X = {11/2}.
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Polynomial Equation of Third Degree
Any single-variable cubic equation can be written so it appears in polynomial standard form.
Often, this is the form you’ll first see.

Polynomial standard form

When a cubic equation is in polynomial standard form, the left side of the equals sign con-
tains a third-degree polynomial, and the right side contains 0 alone. Here’s the general form 
in the realm of the real numbers:

ax 3 + bx 2 + cx + d = 0

where a, b, c, and d are real numbers, a ≠ 0, and x is the variable. All of the following equations 
are cubics in this form:

x 3 + 3x 2 + 2x + 5 = 0
−2x 3 + 3x 2 − 4x = 0
5x 3 − 7x 2 − 5 = 0
−7x 3 − 4x 2 = 0
4x 3 + 3x = 0
−7x 3 − 6 = 0

If you set a = 0 in the polynomial standard form of a single-variable cubic equation, you end 
up with the polynomial standard form for a single-variable quadratic, or even a first-degree 
equation (depending on the other coefficients). However, the coefficients of x 2 or x, as well as 
the stand-alone constant, can equal 0 in a cubic polynomial.

What can we do?

When we see a cubic equation in polynomial standard form, the roots may be apparent right 
away, but often they are not. If we come across the equation

x 3 − 8 = 0

we can see, perhaps without having to do any manipulations, that there’s one real root, x = 2. 
But if we encounter

x 3 + 3x 2 + 2x + 5 = 0

the situation is more challenging. When we see an equation like this, we can try to factor it 
into a product of binomials, or into binomial-trinomial form. If we can manage to do that, 
then we can find the roots as described in the previous sections. But factoring a cubic polyno-
mial is not always easy. If the coefficients and the constant of the polynomial equation are all 
real numbers, a binomial-trinomial expression for the equation must exist, but the coefficients 
and constants might not be integers. They might even turn out to be irrational numbers.



If we see a cubic in polynomial standard form and we find ourselves staring at it, para-
lyzed with uncertainty, there’s some good news, some fair news, and some bad news. First, the 
good news: We can try to factor a binomial out of a polynomial using a process called synthetic
division. That often works, but we’ll probably have to go through the process several times 
before we find the right binomial. Now for the fair news: A general formula for solving a cubic 
equation exists. Finally, the bad news: That formula is so complicated that most mathemati-
cians would rather try every other option first.

Before we see how synthetic division works, we should formalize an important principle.

The binomial factor rule

A little while ago, I made a strong claim: Any cubic equation with real coefficients and a real 
constant has at least one real root. Suppose we call that real number k. If we plug in k for the 
variable in the equation—no matter what form that equation happens to be in—and work 
out the arithmetic, the result will be 0.

Now imagine that we are faced with a cubic equation in polynomial standard form, and 
we can’t figure out how it can be factored. It seems reasonable to suppose that if we can find 
the real root k, which must exist, then the binomial (x − k) can be factored out of the cubic. 
That’s because if we set x equal to k, then the value of (x − k) becomes 0; and with 0 as one of 
the factors, the whole expression attains the value 0. We can package all this reasoning up into 
a formal statement called the binomial factor rule or the factor theorem:

• A real number k is a root of a cubic equation in the variable x if and only if (x − k) is a 
factor of the cubic polynomial.

Remember what “if and only if ” means in logical terms: the “if-then” reasoning works 
both ways. We can therefore rewrite the above rule as two separate statements:

• If a real number k is a root of a cubic equation in the variable x, then (x − k) is a factor 
of the cubic polynomial.

• If k is a real number and (x − k) is a factor of a cubic polynomial in the variable x, then 
k is a real root of the cubic equation.

This rule, which has been proven as a theorem by mathematicians, can be generalized to 
polynomial equations in the fourth degree (called quartic equations), the fifth degree (called 
quintic equations), and, in fact, any positive-integer degree (called nth-degree equations).

We try, we fail

Now that we’re armed with plenty of theoretical facts, it’s time to take aim at a real polynomial 
cubic equation using synthetic division. Let’s try this:

x 3 − 7x − 6 = 0

Remember the general form:

ax 3 + bx 2 + cx + d = 0
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To set up the synthetic division “grid,” we write down the coefficients and the stand-
alone constant in an array along with “wildcard” entries symbolized by pound signs (#), 
like this:

# a b c d

# # #

# # # #

In our example, we have a = 1, b = 0, c = −7, and d = −6. We put those numbers into the top 
row from left to right, starting immediately to the right of the pound sign:

# 1 0 −7 −6

# # #

# # # #

Now the guessing game begins! At first, we have no clue as to what the real root might be. Let’s 
try 2 as a “test root.” We put that number in the top left slot:

2 1 0 −7 −6

# # #

# # # #

Next, we copy the second number in the top row to the “wildcard” slot directly beneath it in 
the bottom row:

2 1 0 −7 −6

# # #

1 # # #

We multiply 2 by 1 and place the product in place of the first wildcard in the second row:

2 1 0 −7 −6

2 # #

1 # # #

We add the numbers in the third column, writing the sum in the bottom row:

2 1 0 −7 −6

2 # #

1 2 # #



We multiply this sum by the “test root” and place the product beneath the entry −7:

2 1 0 −7 −6

2 4 #

1 2 # #

We add the numbers in the fourth column, writing the sum in the bottom row:

2 1 0 −7 −6

2 4 #

1 2 −3 #

Do you see the pattern? Next, we multiply the “test root” by −3, and write the product under 
the entry −6:

2 1 0 −7 −6

2 4 −6

1 2 −3 #

Adding the numbers in the last column yields the final result of our test. Let’s write this last 
number, in the bottom row:

2 1 0 −7 −6

2 4 −6

1 2 −3 −12

This final number is called the remainder. What does this particular result mean? Well, the 
news is not good. We want the remainder to be 0! That is always the ultimate goal of synthetic 
division when we’re looking for a binomial factor of a cubic equation. We must try another 
“test root” and go through this ritual again.

We try, we fail, we learn

Let’s try 4 as our “test root” this time. We put a bold numeral 4 in the top left slot. Then the pro-
cess goes along with the new numbers, in the same way as before. Here’s the sequence of steps:

4 1 0 −7 −6

# # #

# # # #
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4 1 0 −7 −6

# # #

1 # # #

4 1 0 −7 −6

4 # #

1 # # #

4 1 0 −7 −6

4 # #

1 4 # #

4 1 0 −7 −6

4 16 #

1 4 # #

4 1 0 −7 −6

4 16 #

1 4 9 #

4 1 0 −7 −6

4 16 36

1 4 9 #

4 1 0 −7 −6

4 16 36

1 4 9 30

We’ve failed again! But it’s not a total loss. We’ve learned something. The first “test root” pro-
duced a negative remainder. The second “test root” produced a positive remainder. This tells 
us that the number we’re seeking lies between 2 and 4.

We try, we succeed

Let’s see what happens with a “test root” of 3. By now you must be thinking, “A computer 
would be a big help with all this.” That’s true, but things are going to work out neatly this 
time. We won’t need a computer. Let’s go ahead:



3 1 0 −7 −6

# # #

# # # #

3 1 0 −7 −6

# # #

1 # # #

3 1 0 −7 −6

3 # #

1 # # #

3 1 0 −7 −6

3 # #

1 3 # #

3 1 0 −7 −6

3 9 #

1 3 # #

3 1 0 −7 −6

3 9 #

1 3 2 #

3 1 0 −7 −6

3 9 6

1 3 2 #

3 1 0 −7 −6

3 9 6

1 3 2 0

Mission accomplished! We have produced a remainder of 0. Now we know that 3 is a real root 
of the cubic equation

x 3 − 7x − 6 = 0

and also that (x − 3) is a factor of the polynomial.
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What are the other roots?

We can write the binomial-trinomial form of a cubic equation straightaway, once we have 
performed synthetic division on the original cubic and managed to come up with a remainder 
of 0. Take a close look at the numbers in the bottom line of the last step in the synthetic divi-
sion process for the “test root” of 3. Those numbers are 1, 3, 2, and 0. The first three of these, 
in the order shown, are the coefficients and the stand-alone constant in the trinomial factor 
of the cubic equation.

We know, in the above example, that (x − 3) is the binomial factor. The factor theorem tells 
us so. So the trinomial factor is (x 2 + 3x + 2). We can therefore write the binomial-trinomial 
version of the original cubic as

(x − 3)(x 2 + 3x + 2) = 0

To be certain of this, and to get a little complementary credit, you can multiply the left side 
of the equation out and see that it produces the original polynomial.

The other two real roots, if they exist, can be found by solving the quadratic equation

x 2 + 3x + 2 = 0

The roots of this equation turn out to be x = −1 and x = −2. You can verify this fact as another 
complementary-credit exercise. That gives us three real roots for the original cubic:

x = 3 or x = −1 or x = −2

and a real-number solution set X = {3,−1,−2}. For some more complementary credit, you can 
substitute each of these roots for x in the original cubic to demonstrate that they are correct.

Are you confused?
Synthetic division sometimes works out nicely, but in some cases it does not. What if the real roots of a 
cubic are all complicated fractions—or worse, all irrational numbers? What if all the methods to “crack 
a cubic” that we’ve seen in this chapter fail us? There are other schemes available, some of which will be 
covered in the next chapter.

Here’s a challenge!
Consider the following cubic in polynomial standard form:

6x 3 + 13x 2 + 8x + 3

Show by synthetic division that −3/2 is a real root of this equation. Then, from the results of that process, 
show that −3/2 is the only real root.

Solution
First, let’s set up the synthetic division array with the “test root,” x = −3/2, and the coefficients in the 
top row.



−3/2 6 13 8 3

# # #

# # # #

Subsequent steps proceed as follows:

−3/2 6 13 8 3

# # #

6 # # #

−3/2 6 13 8 3

−9 # #

6 # # #

−3/2 6 13 8 3

−9 # #

6 4 # #

−3/2 6 13 8 3

−9 −6 #

6 4 # #

−3/2 6 13 8 3

−9 −6 #

6 4 2 #

−3/2 6 13 8 3

−9 −6 −3

6 4 2 #

−3/2 6 13 8 3

−9 −6 −3

6 4 2 0

We get a remainder of 0. This tells us that x = −3/2 is a real root of the original cubic equation. We can now 
write it in binomial-trinomial form. The binomial factor is what we get when we subtract −3/2 from x.
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That’s (x + 3/2). In the trinomial factor, the coefficient of x 2 is 6, the coefficient of x is 4, and the stand-
alone constant is 2. We know this because 6, 4, and 2 appear, in that order, in the bottom row before the 
remainder 0. Here’s the binomial-trinomial cubic:

(x + 3/2)(6x 2 + 4x + 2) = 0

Let’s examine the trinomial factor. If we let a2 = 6, b2 = 4, and c = 2, we can find the discriminant, d, as 
follows:

 d = b2
2 − 4a2c

 = 42 − 4 × 6 × 2 

 = 16 − 48

 = −32

If we set the trinomial factor equal to 0 to get a quadratic equation, then that quadratic has no real roots 
because d < 0. The only way the original cubic polynomial can attain the value 0 is if either the binomial 
factor is 0, the trinomial factor is 0, or both. The binomial becomes 0 if and only if x = −3/2. We’ve just 
discovered that no real number x can make the trinomial become 0. It follows that x = −3/2 is the only 
real root of the original cubic equation. 

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1. Multiply out the following equation to obtain a polynomial cubic:

(ax + b)3 = 0

where x is the variable, and a and b are real numbers with a ≠ 0.

 2. Multiply out the following equation to get a polynomial cubic:

(31/2x − 121/2)3 = 0 

 3. In the chapter text, we solved this cubic in binomial factor form:

(3x + 2)(5x + 6)(−7x − 1) = 0

  We found that the real roots are

x = −2/3 or x = −6/5 or x = −1/7

  Multiply this equation out to get it into the polynomial standard form.



 4.  Substitute the real roots that we found for the equation stated in Prob. 3, one by one, 
in place of x in the polynomial equation derived in the solution to Prob. 3. Verify that 
these three roots work in that equation.

 5.  Multiply out the general binomial-trinomial equation to get an equation in polynomial 
standard form for a cubic:

(a1x + b1)(a2x 2 + b2x + c) = 0

 6.  How can we tell from the coefficients and the constants alone how many real roots the 
equation stated in Prob. 5 has (before multiplying it out)?

 7.  One of the “challenges” in the text required that we find the roots of the following 
cubic equation in binomial-trinomial form:

(3x + 5)(16x 2 − 56x + 49) = 0

  We found that the real roots are

x = −5/3 or x = 7/4 

   Substitute these roots into the original equation, and go through the arithmetic to verify 
that they’re accurate. Consider the following cubic equation in polynomial standard 
form:

−9x 3 + 21x 2 + 104x + 80 = 0

 8. By means of synthetic division, verify that x = 5 is a real root of this equation.

 9.  Using the quadratic formula on the results of the synthetic division performed in the 
solution to Prob. 8, find the other root or roots of the original cubic, if any exist. Then 
state the solution set.

 10.  The final “challenge” in the text revealed that x = −3/2 is the only real root of the 
following cubic as expressed in the binomial-trinomial form:

(x + 3/2)(6x2 + 4x + 2) = 0

   How many real roots will the cubic have if the coefficient of x in the trinomial is 
changed from 4 to −4? What will the new real roots be, if there are any?
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CHAPTER

2 6

Polynomial Equations 
in Real Numbers

In this chapter, we’ll examine some ways to look for real roots of higher-degree equations with 
real coefficients and real constants. In this context, the term higher-degree applies to any equa-
tion of degree 4 or more. The tactics described in the last part of this chapter can be helpful in 
finding the real roots of stubborn third-degree (cubic) equations as well.

Binomial to the n th Power
Sometimes, a higher-degree equation can be written as a positive-integer power of a binomial 
with a real coefficient and a real constant. Such an equation always has exactly one real root, 
which can be found by setting the binomial equal to 0 to get a first-degree equation. The root 
has multiplicity equal to the value of the power to which the binomial is raised. That’s the 
same as the degree of the equation.

The general form

Suppose x is a variable, a is the nonzero real-number coefficient of x, and b is a real-number 
constant. Consider the expression

(ax + b)n

where n is a positive integer. If we set this equal to 0, we obtain

(ax + b)n = 0

which is an equation in binomial to the nth form. (We don’t have to include the word “power” 
because it’s understood.) Here are some examples of binomial to the nth equations, where n > 3:

 (2x − 3)4 = 0
 (6x + 1)5 = 0
 (23x + 77)6 = 0
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 (−7x − 12)7 = 0
 (−118x + 59)13 = 0
 (−3x)17 = 0

In the last case, the stand-alone constant is 0.

Multiplying out

You can multiply out an equation in binomial to the nth form to get a polynomial equation, 
but the result usually looks more complicated. In some instances, the multiplied-out equation 
becomes messy indeed, as would happen in the fifth example above. But the reverse process, 
if you can carry it out, is useful. Once in awhile, a formidable polynomial equation can be 
reduced to binomial to the nth form. Then it’s easy to solve!

What’s the real root?

Whenever we see an equation in binomial to the nth form, we can find the real root by 
considering the binomial as a first-degree equation. When we do that with the above higher-
degree equations, we get

 2x − 3 = 0
 6x + 1 = 0
 23x + 77 = 0
 −7x − 12 = 0
 −118x + 59 = 0
 −3x = 0

These all resolve easily. The original equations, which are of degree 4, 5, 6, 7, 13, and 17, have 
one real root apiece, of multiplicity 4, 5, 6, 7, 13, and 17 respectively.

Are you confused?
Perhaps you still wonder, “What’s all this fuss about root multiplicity? If an equation has one real root, isn’t 
that all there is to be said about it?” The answer is, “Not exactly.” Let’s look at three equations that have 
identical solution sets. The first-degree equation

2x − 3 = 0

has one real solution, x = 3/2. The fourth-degree equation

(2x − 3)4 = 0

has a single real root, x = 3/2. But there’s something about the fourth-degree equation that makes it con-
ceptually different than the first-degree equation. We can rewrite the fourth-degree equation as

(2x − 3)(2x − 3)(2x − 3)(2x − 3) = 0
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If we substitute 3/2 for x here, we get

(2 × 3/2 − 3)(2 × 3/2 − 3)(2 × 3/2 − 3)(2 × 3/2 − 3) = 0

which reduces to

(3 − 3)(3 − 3)(3 − 3)(3 − 3) = 0

and further to

0 × 0 × 0 × 0 = 0

To carry out the substitution and simplification process completely, we must repeat it for each of the four 
binomials. The root x = 3/2 exists, in effect, “four times over.” Now look at this:

(2x − 3)345 = 0

Here, the single real root x = 3/2 exists “345 times over.”
 The solution sets are identical for the first-degree, the fourth-degree, and the 345th-degree equations in 
this example. But the equations themselves are vastly different!

Here’s a challenge!
Consider the following equation, which is in the form of a trinomial squared. Find all the real roots, and 
state the multiplicity of each.

(x 2 + 2x + 1)2 = 0

Solution
Look closely at the trinomial. Suppose we set it equal to 0, so it becomes the quadratic

x 2 + 2x + 1 = 0

We can factor this to get

(x + 1)2 = 0

If we substitute (x + 1)2 for the trinomial in the original equation, we have

[(x + 1)2]2 = 0

The product of powers rule from Chap. 9 tells us that this is the same as

(x + 1)(2×2) = 0

which can be simplified to

(x + 1)4 = 0



We now have a binomial to the nth equation with n = 4. We can find the solitary real root by setting the 
binomial equal to 0:

x + 1 = 0

This first-degree equation resolves to x = −1. The real solution set of the original trinomial-squared equa-
tion is X = {−1}. The single root has multiplicity 4.

Binomial Factors
A higher-degree equation can appear as a product of binomials. Such an equation has one 
real root for each factor. You can find each root by setting every binomial equal to 0 and then 
creating first-degree equations from them. Each root has multiplicity equal to the number of 
times its binomial appears in the product. If a binomial is raised to a power, then its root has 
multiplicity equal to that power.

The general form

Let x be a real-number variable. Suppose that a1, a2, a3, ... an are nonzero real coefficients of x,
and b1, b2, b3, ... bn are real stand-alone constants. Consider the equation

(a1x + b1)(a2x + b2)(a3x + b3) ··· (anx + bn) = 0

This is the binomial factor form for an equation of degree n. Here are some examples of equa-
tions in this form where n > 3:

 (x + 1)(x − 2)(x + 3)(x − 4) = 0
 (x + 1)(x − 2)2(x + 3)3(x − 4)4 = 0
 (3x + 7)6(4x − 5)2 = 0
 (−x + 1)(−7x + 2)7 = 0
 (−3x + 21)2(−8x + 5)3 = 0
 (x + 6)(2x − 5)2(7x)(−3x) = 0

In all but the first of these equations, some of the binomials are raised to powers. That’s the 
equivalent of repeating those binomials in the products by the number of times the power 
indicates. In the last equation, two of the stand-alone constants are equal to 0. 

Multiplying out

You can multiply out an equation that appears in the binomial factor form to get a polyno-
mial equation. If you want to do this for each of the six equations in the previous paragraph, 
go ahead! You’ll end up with equations that are difficult to solve for anyone who comes across 
them for the first time.
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What are the real roots?

As we search for real roots to a higher-degree equation in binomial factor form, we know we’ve 
“made a hit” when any of the factors becomes 0. That means we can set the binomial factors 
equal to 0, one by one, and then solve each of them to get all the real roots.

Consider the first of the six binomial factor equations listed above. Let’s find all the real 
roots of

(x + 1)(x − 2)(x + 3)(x − 4) = 0

We take each binomial individually, set it equal to 0, and then solve the resulting first-degree 
equations:

 x + 1 = 0
 x − 2 = 0
 x + 3 = 0
 x − 4 = 0

Any value of x that satisfies one of these is a root of the higher-degree equation. There are four 
such values:

x = −1 or x = 2 or x = −3 or x = 4

so the real solution set of the higher-degree equation is X = {−1, 2, −3, 4}.
Now consider another higher-degree equation. This one is a little tricky, because three of 

the four binomials have exponents attached:

(x + 1)(x − 2)2(x + 3)3(x − 4)4 = 0

If we remove the exponents from the binomials and set each equal to 0, we get the same 
four first-degree equations as before. That means the real roots of the higher-degree equa-
tion are the same, too. But three of the four roots have multiplicity greater than 1. The 
root x = 2 has multiplicity 2, the root x = −3 has multiplicity 3, and the root x = 4 has 
multiplicity 4.

Are you confused?
Does the concept of multiplicity still seem esoteric? In the example we just finished, it can help if we write 
out every binomial factor individually so none is raised to a power (other than the first power). Grouped 
according to their constants, those factors are

(x + 1)

(x − 2)(x − 2)

(x + 3)(x + 3)(x + 3)

(x − 4)(x − 4)(x − 4)(x − 4)



We have a root in every single case where one of these factors becomes equal to 0. There are not four 
such instances here, but 10! We “hit the target” once when x = −1, twice when x = 2, three times 
when x = −3, and four times when x = 4. This is true even though the real solution set has only four 
elements:

X = {−1, 2, −3, 4}

Incidentally, the degree of the original equation is equal to the sum of the exponents attached to the bino-
mial factors. That’s 1 + 2 + 3 + 4 = 10. On that basis, we can immediately see that

(x + 1)(x − 2)2(x + 3)3(x − 4)4 = 0

is a 10th-degree equation in the variable x.

Here’s a challenge!
State the real roots of the following equation. Also state the real solution set X and the multiplicity of each 
root. What is the degree of the equation?

(x + 6)(2x − 5)2(7x)(−3x) = 0

Solution
We take each binomial individually, set it equal to 0, and then solve the resulting first-degree 
equations:

 x + 6 = 0

 2x − 5 = 0

 7x = 0

 −3x = 0

The real roots are

x = −6 or x = 5/2 or x = 0

and the real solution set is X = {−6, 5/2, 0}. The root −6 has multiplicity 1. The root 5/2 has multiplicity 2. 
The root 0 has multiplicity 2. These facts can be clarified by stating the original equation as

(x + 6)(2x − 5)(2x − 5)(7x)(−3x) = 0

The degree of the original equation is the sum of the exponents attached to the factors. In this example, 
whether we write the equation in the original form or in the fully expanded binomial factor form, that sum 
is 5, indicating that it’s a fifth-degree equation.
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Polynomial Standard Form
A higher-degree equation in polynomial standard form contains a sum of multiples of the 
variable raised to powers in descending order on the left side of the equals sign. The right side 
of the equals sign has 0 all by itself.

General polynomial equation

The polynomial standard form of a higher-degree equation can be written as

anx n + an-1x n-1 + an-2x n-2 + ··· + a1x + b = 0

where a1, a2, a3, ... an are coefficients, b is the stand-alone constant, and n is a positive integer 
greater than 3. Here are some examples:

 6x 4 − 3x 3 + 3x 2 + 2x + 5 = 0

 3x 5 − 4x 3 = 0
 −7x 7 − 5x 4 + 3x 3 − x 2 − 29 = 0
 −4x 11 = 0

In all but the first of these equations, some of the coefficients are equal to 0. The coefficient 
an, by which x n is multiplied, can never be 0 in an nth-degree polynomial equation. If you set 
an = 0, you end up with

0x n + an-1x n-1 + an-2x n-2 + ··· + a1x + b = 0

That’s the polynomial standard form for a single-variable equation of degree n − 1:

an-1x n-1 + an-2x n-2 + ··· + a1x + b = 0

Mutants in the n th degree

As you can imagine, many single-variable equations can be morphed into the polynomial 
standard form. Here are some examples:

x 2 = 2x + 3x 7 − 4x 15

x = 4x 21 − 7x 17 + 2x 11 + 2x 7

x 8 + 4x 6 + 7x 4 − x 2 + 3 = x + x 3 + x 5 + x 7

The only requirements for membership in the “single-variable nth-degree equation club” are 
that the equation be convertible into polynomial standard form, and that n be a positive inte-
ger. If n = 1, we have a first-degree equation; if n = 2, we have a quadratic; if n = 3, we have a 
cubic; if n > 3, we have a higher-degree equation.



Digging for Real Roots
Now that we’ve learned how to recognize a polynomial equation, it’s time to think about 
finding the real roots of such an equation, if any exist. The next few sections offer some ways 
to look for the roots of higher-degree equations. But there are no guarantees. Anyone but the 
purest mathematician would likely concede that these types of situations lend themselves to 
computer programming.

A prefabricated problem

To illustrate how the real roots can be sought when we’re confronted with a polynomial equa-
tion, let’s look for the real roots of

x 4 − 2x 3 − 13x 2 + 14x + 24 = 0

This equation was built up from factors. Here’s what it looks like in binomial factor form:

(x + 1)(x − 2)(x + 3)(x − 4) = 0

We solved this awhile ago. The roots are

x = −1 or x = 2 or x = −3 or x = 4

Now imagine that we’re looking at the polynomial version of this equation, and we’ve never 
seen it in any other form. We’ve been told to find the real roots.

How many roots?

When you embark on a quest to find the real roots of a polynomial equation, you might 
wonder how long you should keep trying before you give up (or let your computer take over). 
In part, it depends how much time and patience you have. Here’s an important principle to 
keep in mind:

• A polynomial equation can never have more roots than its degree. That includes not 
only the real roots, but all of the complex roots.

If you’re working on a polynomial equation of degree n and you’ve found n roots, you can 
terminate your quest. You’ve resolved the mystery. There is nothing more to find.

Bounds for real roots

The real roots of a polynomial equation always lie between two extremes. We can identify an 
interval that contains all the elements in the real solution set if we can discover an upper bound
that’s big enough, and if we can discover a lower bound that’s small enough. In this context, 
we consider only non-inclusive bounds. That means an upper bound must be greater than the 
largest real root of the equation, and a lower bound must be less than the smallest real root of 
the equation.
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Finding an upper bound

How can we find an upper bound for the roots of the polynomial equation under investiga-
tion? Here’s the equation again:

x 4 − 2x 3 − 13x 2 + 14x + 24 = 0

The coefficients and constant are 1, −2, −13, 14, and 24 in order of descending powers of x.
Let’s set up a synthetic division array for this equation:

# 1 −2 −13 14 24

# # # #

# # # # #

If we plug in a positive real number as a “test root,” we can tell if it’s an upper bound for the 
real solution set by looking at the values we get in the last row. If we get a nonzero remainder 
and none of the numbers in the last row are negative, then our “test root” is an upper bound. 
Let’s take absolute values of the coefficients and constant in the equation and pick out the 
largest. In this case, that’s 24. It seems reasonable that this might be larger than or equal to all 
the real roots. Let’s input 24 and see what happens:

24 1 −2 −13 14 24

# # # #

# # # # #

24 1 −2 −13 14 24

# # # #

1 # # # #

24 1 −2 −13 14 24

24 # # #

1 # # # #

24 1 −2 −13 14 24

24 # # #

1 22 # # #

24 1 −2 −13 14 24

24 528 # #

1 22 # # #



24 1 −2 −13 14 24

24 528 # #

1 22 515 # #

24 1 −2 −13 14 24

24 528 12,360 #

1 22 515 # #

24 1 −2 −13 14 24

24 528 12,360 #

1 22 515 12,374 #

24 1 −2 −13 14 24

24 528 12,360 296,976

1 22 515 12,374 #

24 1 −2 −13 14 24

24 528 12,360 296,976

1 22 515 12,374 297,000

None of the numbers in the bottom row are negative. Therefore, 24 is an upper bound for 
the real solution set. The fact that the numbers increase so fast (we might even say that they 
“blow up”) suggests that 24 is a much larger than the largest root of the equation. We can try 
something smaller, but still positive, and do the synthetic division again. As long as we input 
positive “test roots” and never see a negative number in the last row, we know that we’re input-
ting upper bounds.

Finding a lower bound

If we plug in a negative number as a “test root,” grind out the synthetic division process, get 
a nonzero remainder, and discover that the numbers in the last row alternate between positive 
and negative, it tells us that we’ve found a lower bound for the real solution set. Let’s take the 
absolute values of the coefficients and constant, and pick out the negative of the largest result. 
That’s −24. It’s a good bet that this is smaller than all the real roots. Let’s input it to the array 
and find out:

−24 1 −2 −13 14 24

# # # #

# # # # #
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−24 1 −2 −13 14 24

# # # #

1 # # # #

−24 1 −2 −13 14 24

−24 # # #

1 # # # #

−24 1 −2 −13 14 24

−24 # # #

1 −26 # # #

−24 1 −2 −13 14 24

−24 624 # #

1 −26 # # #

−24 1 −2 −13 14 24

−24 624 # #

1 −26 611 # #

−24 1 −2 −13 14 24

−24 624 −14,664 #

1 −26 611 # #

−24 1 −2 −13 14 24

−24 624 −14,664 #

1 −26 611 −14,650 #

−24 1 −2 −13 14 24

−24 624 −14,664 351,600

1 −26 611 −14,650 #

−24 1 −2 −13 14 24

−24 624 −14,664 351,600

1 −26 611 −14,650 351,624



The numbers in the last row alternate in sign, telling us that −24 is a lower bound for 
the real solution set. The fact that the absolute values diverge rapidly from 0 suggests that our 
input number is far smaller than necessary. We can try something larger, but still negative, and 
do the synthetic division again. As long as we plug in negative “test roots” and get numbers in 
the last line that alternate in sign, we know that we’re inputting lower bounds.

Narrowing the interval

We can reduce the size of the interval containing the real solutions by repeatedly testing posi-
tive numbers as upper bounds, and by repeatedly testing negative numbers as lower bounds. 
Once we get a positive “test root” that produces a negative number anywhere in the bottom 
line, or a negative “test root” that fails to cause the numbers in the bottom line to alternate in 
sign, we know that we are in the interval containing the real roots.

Suppose we gradually reduce the positive “test root” and gradually increase the negative 
“test root” in the synthetic division array

# 1 −2 −13 14 24

# # # #

# # # # #

If we use integers for simplicity, we’ll eventually get down to a smallest upper bound, and we’ll 
also get up to a greatest lower bound. At that point, we can test numbers between those bounds 
to look for real roots. In this particular example, we’ll get a smallest upper bound of 5 and a 
greatest lower bound of −4.

Rational roots

There’s a lengthy but straightforward process you can use to find all the rational roots of a 
polynomial equation in the standard form

anx n + an-1x n-1 + an-2x n-2 + · · + a1x + b = 0

where a1, a2, a3, ... an are nonzero rational-number coefficients of the variable x, b is a nonzero 
rational constant, and n is a positive integer greater than 3. If b = 0, then you can’t use the 
process, but you will at least know that 0 is a root. If b ≠ 0, then you can go through the fol-
lowing steps.

• Make certain that all the numbers a1, a2, a3, ... an, and b are integers. If that is not 
the case, multiply the equation through by the smallest constant that will turn all the 
numbers a1, a2, a3, ... an, and b into integers.

• Find all the positive and negative integer factors of b, the stand-alone constant. Call 
these by the general name m.

• Find all the positive and negative integer factors of an, the coefficient of xn (sometimes 
called the leading coefficient). Call these by the general name n.

• Write down all the possible ratios m /n. Call them by the general name r.

Digging for Real Roots  443



444 Polynomial Equations in Real Numbers

• With synthetic division, check every r to see if it is a root of the original polynomial 
equation. If you find a root, you’ll get a remainder of 0 at the end of the synthetic divi-
sion process.

• If none of the numbers r produces a remainder of 0, then the original polynomial 
equation has no rational roots.

• If one or more of the ratios r produces a remainder of 0, then every one of those num-
bers is a rational root of the equation.

• List all of the rational roots found after carrying out the preceding steps. Call them r1,
r2, r3, and so on.

• Create binomials of the form (x − r1), (x − r2), (x − r3), and so on. Each of these bino-
mials is a factor of the original equation.

• If you’re lucky, you’ll end up with an equation in binomial to the nth form, or an equa-
tion in binomial factor form.

• If you’re less lucky, you’ll end up with one or more binomial factors and a quadratic 
factor. That factor can be set equal to 0, and then the quadratic formula can be used to 
find its roots. Neither of those roots will be rational. They might even be complex.

• If you’re unlucky, you’ll be stuck with one or more binomial factors and a cubic or 
higher-degree factor. If you set that factor equal to 0 to form a polynomial equation, 
you’ll know that none of the roots of that equation are rational. Some might even be 
complex. You can try to solve it, but you should not expect the task to be easy.

Are you confused?
At this point, you must wonder, “Suppose we’re left with a cubic or higher-degree polynomial as one of the 
factors, and its associated equation has some irrational roots. What can we do to find those roots?” The best 
answer is, “We can use a computer program to generate an approximate graph of the function produced by 
the polynomial equation, see how many times that graph crosses the x axis, and then use the computer to 
approximate the zeros of that function.” This method will not allow us to find non-real roots.

Here’s a challenge!
Use the above-described procedure to find all the rational roots of the polynomial equation we contrived 
earlier in this chapter, and for which we know the smallest upper bound is 5 and the greatest lower bound 
is −4. Once again, that equation is

x 4 − 2x 3 − 13x 2 + 14x + 24 = 0

Solution
Here is an outline of the process. You might want to work out the arithmetic, particularly the synthetic 
division problems, to verify.

• All the coefficients, as well as the stand-alone constant, are integers, so we don’t have to multiply 
the equation through by anything.

• The positive and negative integer factors of the stand-alone constant, 24, are all the integers m that 
divide 24 without remainders. These numbers are 24, 12, 8, 6, 4, 3, 2, and 1, along with all their 
negatives.



• There are only two integer factors n of the leading coefficient: 1 and −1.
• All the possible ratios m /n are the same as the integers m: 24, 12, 8, 6, 4, 3, 2, and 1, along with 

all their negatives.
• Now let’s cheat a little. Imagine that we’ve narrowed down the interval by doing synthetic division 

repeatedly, finding a smallest upper bound of 5 and a greatest lower bound of −4. That leaves us 
with rational numbers r of 4, 3, 2, 1, −1, −2, and −3 to check as possible roots.

• We input 4, 3, 2, 1, −1, −2, and −3 to synthetic division arrays, and see if we get a remainder of 
0 for any of them.

• We get a remainder of 0 when r = 4, r = 2, r = −1, or r = −3. Now we know that every one of those 
numbers is a rational root of the equation.

• We have found four rational roots for a fourth-degree equation. There are no more rational roots to 
find! In fact, these are all the roots of any sort. Remember: A polynomial equation can never have more 
roots than its degree. That includes not only the rational roots, but the irrational and complex roots.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1. Rewrite each of the following equations in binomial to the nth form.

(a) (x 2 + 6x + 9)2 = 0
(b) (x 2 − 4x + 4)3 = 0
(c) (16x 2 − 24x + 9)4 = 0

 2.  What are the real roots for each of the equations stated in Prob. 1? What is the 
multiplicity in each case?

 3. Rewrite each of the following equations in binomial factor form.

(a) (x 2 − 3x + 2)2 = 0
(b) (−3x 2 − 5x + 2)5 = 0
(c) (4x 2 − 9)3 = 0

 4.  What are the real roots for each of the equations stated in Prob. 3? What is the 
multiplicity in each case?

 5.  State the real roots of the following equation. Also state the real solution set X and the 
multiplicity of each root. What is the degree of the equation?

(x − 3/2)2(2x − 7)2(7x)3(−3x + 5)5 = 0

 6.  State the real roots of the following equation. Also state the real solution set X and the 
multiplicity of each root. What is the degree of the equation?

(x + 4)(2x − 8)2(x /3 + 12)3 = 0
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 7.  Using synthetic division, find a lower bound and an upper bound for the interval 
containing all the real roots of the equation

2x 5 − 3x 3 − 2x + 2 = 0

 8. Determine all the rational roots of the equation stated in Prob. 7.

 9.  Using synthetic division, find a lower bound and an upper bound for the interval 
containing all the real roots of the equation

3x 5 − 3x 2 + 2x − 2 = 0

 10. Determine all the rational roots of the equation stated in Prob. 9.



We’ve seen how pairs of linear equations can be solved as two-by-two systems. What if the 
equations are more complicated? In this chapter, we’ll solve some two-by-two systems in 
which one or both of the equations are quadratic or cubic.

Linear and Quadratic
When we want to solve a pair of two-variable equations together as a system, we can go 
through these steps in order.

• Decide which variable to call independent, and which variable to call dependent.
• Morph both equations so they express the dependent variable in terms of the indepen-

dent variable.
• Mix the independent-variable parts of the equations to get an equation in a single 

variable.
• Find the root or roots of that equation.
• Plug the root or roots into one of the morphed original equations, and calculate the 

corresponding value or values of the dependent variable.
• Express the solutions as ordered pairs with the independent variable listed first.

First, we morph

Let’s try an example. Consider these two equations, the first of which is linear and the second 
of which is quadratic:

2x − y + 1 = 0

and

y = x 2 + x − 5
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If we call x the independent variable, then the quadratic equation is already expressed as a 
function of x, so we don’t have to manipulate it. The linear equation can be rearranged so it appears 
as a function of x by adding y to each side and then transposing the left and right sides, getting

y = 2x + 1

We now have two functions in which x is the independent variable and y is the dependent 
variable.

Next, we mix

When we mix the independent-variable parts of the above functions, we have

x 2 + x − 5 = 2x + 1

We can subtract 1 from both sides to obtain

x 2 + x − 6 = 2x

Then we can subtract 2x from both sides to get

x 2 − x − 6 = 0

Next, we solve

We’ve derived a quadratic equation that can be solved using any of the methods from 
Chaps. 22 and 23. We’re lucky here, because this equation can be factored into

(x + 2)(x − 3) = 0

The roots are found by solving the two first-degree equations

x + 2 = 0

and

x − 3 = 0

giving us x = −2 or x = 3. We can substitute these two values for x into either of the morphed 
original equations to obtain corresponding values for y. The simpler of the two is

y = 2x + 1

For x = −2, we have

 y = 2 × (−2) + 1
 = −4 + 1
 = −3
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For x = 3, we have

 y = 2 × 3 + 1
 = 6 + 1
 = 7

The two solutions of the system are therefore (x, y) = (−2, −3) and (x, y) = (3, 7).

Finally, we check

Let’s check both solutions in the original two-variable equations to be certain that we did our 
algebra and arithmetic right. This exercise can also help us to see how the system “plays out.” 
First, let’s check (−2, −3) in the original two-variable linear equation:

 2x − y + 1 = 0 
 2 × (−2) − (−3) + 1 = 0 
 −4 + 3 + 1 = 0 
 −1 + 1 = 0 
 0 = 0 

Next, we check (3, 7) in that same equation:

 2x − y + 1 = 0 
 2 × 3 − 7 + 1 = 0 
 6 − 7 + 1 = 0 
 −1 + 1 = 0 
 0 = 0 

Next, we check (−2, −3) in the original two-variable quadratic:

 y = x 2 + x − 5 
 −3 = (−2)2 + (−2) − 5 
 −3 = 4 + (−2) − 5 
 −3 = 2 − 5 
 −3 = −3

To finish up, we check (3, 7) in the original quadratic:

 y = x 2 + x − 5 
 7 = 32 + 3 − 5 
 7 = 9 + 3 − 5 
 7 = 12 − 5 
 7 = 7 
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Are you confused?
We’ve found two ordered pairs (x, y) that solve the above pair of equations as a two-by-two system. How 
do we know that these are the only two solutions for this system? We can demonstrate this visually for the 
real-number solutions by graphing both equations together on the coordinate plane. The linear equation 
shows up as a straight line, and the quadratic shows up as a parabola. In the next chapter, we’ll plot these 
graphs. You’ll see that they intersect at the points corresponding to the ordered pairs (−2, −3) and (3, 7), 
but nowhere else.

Here’s a challenge!
Suppose that a1, a2, b1, b2, and c are real numbers, and neither a1 nor a2 are equal to 0. Consider these two 
functions of x :

y = a1x + b1

and

y = a2x 2 + b2x + c

Derive a general formula for solving this linear-quadratic system.

Solution
We can follow the same procedure as we did for the example we just solved, but we must use letter con-
stants instead of specific numbers, and we can’t simplify the expressions as much. These two equations are 
ready to mix; we have no morphing to do. When we set the right sides equal to each other, we get

a1x + b1 = a2x 2 + b2x + c

We can subtract b1 from each side to get

a1x = a2x 2 + b2x + c − b1

We can then subtract a1x from each side, obtaining

0 = a2x 2 + b2x + c − b1 − a1x

The commutative, distributive, and grouping principles, followed by left-to-right transposition, allow us 
to rearrange this equation to get

a2x 2 + (b2 − a1)x + (c − b1) = 0

If you’re confused by this rearrangement, or if you aren’t convinced that it’s correct, then check it out 
for yourself. Change the subtractions to negative additions, move things around, and then change them 
back again.
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Now we have a quadratic equation in standard form. That means we can solve it directly with the 
quadratic formula. Let’s state the quadratic formula once again as we originally learned it. For the general 
quadratic

ax 2 + bx + c = 0

the roots are given by

x = [−b ± (b2 − 4ac)1/2] / (2a)

To make the quadratic formula work in the current equation, let’s make these substitutions in the classical 
version:

• Write a2 in place of a
• Write (b2 − a1) in place of b
• Write (c − b1) in place of c

When we do that, we get

x = {−(b2 − a1) ± [(b2 − a1)2 − 4a2(c − b1)]1/2} / (2a2)

The roots defined by this formula give us the x-values for the solution of the original linear-quadratic sys-
tem. We can simplify this slightly by getting rid of the minus sign in the first expression on the right side 
of the equals sign, and then reversing the positions of a1 and b2 inside the parentheses, getting

x = {(a1 − b2) ± [(b2 − a1)2 − 4a2(c − b1)]1/2} / (2a2)

Any attempt to further simplify this will eliminate some grouping symbols, but will not make the formula 
easier to use.

When we’ve found the x-values of the solutions, we can plug them into either of the original functions 
to obtain the y-values. In this case, the linear function is less messy than the quadratic. If we call the x-values 
x1 and x2, then

y1 = a1x1 + b1

and

y2 = a1x2 + b1

The solutions of the whole system can be written as the ordered pairs (x1, y1) and (x2, y2).

Two Quadratics
Now let’s solve a two-by-two system consisting of these quadratic equations in the two vari-
ables x and y :

4x 2 + 6x + 2y + 8 = 0
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and

3x 2 + y + 5x − 11 = 0

First, we morph

In both of these equations, a multiple of y can be separated out and placed alone on the left 
side of the equals sign, producing quadratic functions of x. In the first equation, we can sub-
tract 2y from each side and then transpose the sides to get

−2y = 4x 2 + 6x + 8

Dividing through by −2, we get the function

y = −2x 2 − 3x − 4

In the second original equation, we can subtract y from each side and then transpose the sides, 
getting

−y = 3x 2 + 5x − 11

Multiplying through by −1, we get

y = −3x 2 − 5x + 11

Next, we mix

When we directly mix the right sides of the above two quadratic functions, we get a single 
equation in one variable:

−2x 2 − 3x − 4 = −3x 2 − 5x + 11

We can add the quantity (3x 2 + 5x − 11) to each side, obtaining

x 2 + 2x − 15 = 0

which is a quadratic equation in polynomial standard form.

Next, we solve

We now have an equation that can be easily factored. It does not take long to figure out that 
the above quadratic is equivalent to

(x + 5)(x − 3) = 0

The roots are found by solving the equations

x + 5 = 0
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and

x − 3 = 0

giving us x = −5 or x = 3. We can substitute these two values for x into either of the original 
functions to get the y-values. Let’s use the first one:

y = −2x 2 − 3x − 4

For x = −5, we have

 y = −2 × (−5)2 − 3 × (−5) − 4
 = −2 × 25 − (−15) − 4
 = −50 + 15 − 4
 = −35 − 4
 = −39

For x = 3, we have

 y = −2 × 32 − 3 × 3 − 4
 = −2 × 9 − 9 − 4
 = −18 − 9 − 4
 = −27 − 4
 = −31

The two solutions of the system are therefore (x, y) = (−5, −39) and (x, y) = (3, −31).

Finally, we check

Even though it may seem redundant, we should check both solutions in the original equations 
to remove all doubt about their correctness. Let’s begin by plugging (−5, −39) into the first 
equation, paying careful attention to the signs:

 4x 2 + 6x + 2y + 8 = 0
 4 × (−5)2 + 6 × (−5) + 2 × (−39) + 8 = 0
 4 × 25 + (−30) + (−78) + 8 = 0
 100 + (−30) + (−78) + 8 = 0
 70 + (−78) + 8 = 0
 −8 + 8 = 0
 0 = 0

Next, we check (3, −31) in that equation:

 4x 2 + 6x + 2y + 8 = 0
 4 × 32 + 6 × 3 + 2 × (−31) + 8 = 0
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 4 × 9 + 18 + (−62) + 8 = 0
 36 + 18 + (−62) + 8 = 0
 54 + (−62) + 8 = 0
 −8 + 8 = 0
 0 = 0

Next, we check (−5, −39) in the second original equation:

 3x 2 + y + 5x − 11 = 0
 3 × (−5)2 + (−39) + 5 × (−5) − 11 = 0
 3 × 25 + (−39) + (−25) − 11 = 0
 75 + (−39) + (−25) − 11 = 0
 36 + (− 25) − 11 = 0
 11 − 11 = 0
 0 = 0

Completing the job, we check (3, −31) in that equation:

 3x 2 + y + 5x − 11 = 0
 3 × 32 + (−31) + 5 × 3 − 11 = 0
 3 × 9 + (−31) + 15 − 11 = 0
 27 + (−31) + 15 − 11 = 0
 −4 + 15 − 11 = 0
 11 − 11 = 0
 0 = 0

Are you confused?
You might ask, “Is it possible for a two-by-two system, in which one or both of the equations is quadratic, 
to have imaginary or complex solutions?” The answer is “Yes. In that case, when we use the quadratic 
formula, those solutions will appear.” You’ll see this happen in later in this chapter.

Here’s a challenge!
Suppose that a1, a2, b1, b2, c1, and c2 are real numbers, and neither a1 nor a2 is equal to 0. Consider these 
two functions of x :

y = a1x 2 + b1x + c1

and

y = a2x 2 + b2x + c2

Derive a general formula for solving this system.
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Solution
Both of these equations are presented as functions of x , so we can mix the right sides directly without hav-
ing to manipulate. When we do that, we get

a1x 2 + b1x + c1 = a2x 2 + b2x + c2

The next several steps are tricky. It’s easy to make mistakes with the signs and the grouping. To minimize 
the risk of error, let’s do negative additions, rearrange and regroup the symbols, and change the negative 
additions to subtractions after we’ve put everything in the proper order. We can add the negatives of a2x2,
b2x, and c2 to each side, getting

a1x 2 + b1x + c1 + (−a2x 2) + (−b2x) + (−c2) = 0

Using the commutative law for addition, we can rewrite this as

a1x 2 + (−a2x 2) + b1x + (−b2x) + c1 + (−c2) = 0

The distributive law of multiplication over addition allows us to group the coefficients and the constants 
to get

[a1 + (−a2)]x 2 + [b1 + (−b2)]x + [c1 + (−c2)] = 0

Changing the negative additions back to subtractions, we obtain

(a1 − a2)x 2 + (b1 − b2)x + (c1 − c2) = 0

We can solve this equation with the quadratic formula. For reference, here it is, yet one more time, in its 
classical form. (Have you memorized it yet?) When we see the quadratic equation

ax 2 + bx + c = 0

the roots are given by

x = [−b ± (b2 − 4ac)1/2] / (2a)

To solve the equation at hand, we can make these substitutions in the classical version of the quadratic 
formula:

• Write (a1 − a2) in place of a
• Write (b1 − b2) in place of b
• Write (c1 − c2) in place of c

When we make these changes in “copy-and-paste” fashion, we get

x = {−(b1 − b2) ± [(b1 − b2)2 − 4(a1 − a2)(c1 − c2)]1/2} / [2(a1 − a2)]

We can simplify this slightly by getting rid of the minus sign in the first expression on the right side of the 
equals sign, and then reversing the positions of b1 and b2 inside the parentheses. We can also multiply out 
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the denominator. But there’s no good reason to expand the products of the binomials. That would produce 
a formula with fewer grouping symbols, but the arithmetic would be more cumbersome in practical use. 
Let’s express the formula as

x = {(b2 − b1) ± [(b1 − b2)2 − 4(a1 − a2)(c1 − c2)]1/2} / (2a1 − 2a2)

After we’ve found the x-values of the solutions by plugging in the coefficients, plugging in the constants, and 
going through the arithmetic, we can put those x-values into either of the original two functions and calculate 
the y-values. If we call the x-values x1 and x2, and if we use the first of the original functions, we have

y1 = a1x1
2+ b1x1 + c1

and

y2 = a1x2
2 + b1x2 + c1

The solutions of the whole system can be written as ordered pairs in the form (x1, y1) and (x2, y2).

Enter the Cubic
Let’s solve a two-by-two system in which one equation is linear and the other is cubic. Con-
sider these:

x 3 + 6x 2 + 14x − y = −7

and

−6x + 2y = 2

First, we morph

Again, it appears as if we ought to let x be the independent variable, and then derive two func-
tions of that variable. In the first equation, we can add 7 to each side, getting

x 3 + 6x 2 + 14x − y + 7 = 0

Then we can add y to each side and transpose the equation left-to-right, obtaining y as a 
function of x :

y = x 3 + 6x 2 + 14x + 7

In the second equation, we can divide through by −2 to obtain

3x − y = −1

Adding 1 to each side gives us

3x − y + 1 = 0
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We can add y to each side and transpose the equation left-to-right, getting the function

y = 3x + 1

Next, we mix

When we mix the independent-variable parts of the above functions, we obtain one equation 
in one variable:

x 3 + 6x 2 + 14x + 7 = 3x + 1

If we subtract the quantity (3x + 1) from both sides, we get

x 3 + 6x 2 + 11x + 6 = 0

This is a straightforward cubic equation in polynomial standard form. The roots aren’t obvi-
ous from casual inspection, but we can use the techniques from Chap. 25 to solve it.

Next, we solve

Now that we have derived a cubic equation in one variable, our mission is to find its roots. We 
can use synthetic division several times to obtain factors. Ultimately, we find that the cubic 
factors into

(x + 1)(x + 2)(x + 3) = 0

The roots can be found by solving the three equations we get when we set each binomial equal 
to 0. Those roots are x = −1, x = −2, and x = −3. The y-values can be found by plugging these 
roots into either of the original functions. Let’s use the linear one; it’s the less messy of the 
two! For x = −1, we have

 y = 3x + 1

 = 3 × (−1) + 1

 = −3 + 1
 = −2

Now we know that our first solution is (x, y) = (−1, −2). When x = −2, we have

 y = 3x + 1

 = 3 × (−2) + 1

 = −6 + 1
 = −5
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Our second solution is (x, y) = (−2, −5). Plugging in x = −3, we have

 y = 3x + 1
 = 3 × (−3) + 1
 = −9 + 1
 = −8

Our third solution is (x, y) = (−3, −8).

Finally, we check

There are six arithmetic exercises to do! It’s tedious, but if we want to be sure our solutions 
are right, it’s mandatory. We’d better be careful with the signs, using negative additions rather 
than subtractions as much as possible! We check (−1, −2) in the first original equation:

 x 3 + 6x 2 + 14x − y = −7
 (−1)3 + 6 × (−1)2 + 14 × (−1) − (−2) = −7
 −1 + 6 × 1 + (−14) + 2 = −7
 −1 + 6 + (−14) + 2 = −7
 −7 = −7

Next, we check (−2, −5) in the first original equation:

 x 3 + 6x 2 + 14x − y = −7
 (−2)3 + 6 × (−2)2 + 14 × (−2) − (−5) = −7
 −8 + 6 × 4 + (−28) + 5 = −7
 −8 + 24 + (−28) + 5 = −7
 −7 = −7

Next, we check (−3, −8) in the first original equation:

 x 3 + 6x 2 + 14x − y = −7
 (−3)3 + 6 × (−3)2 + 14 × (−3) − (−8) = −7
 −27 + 6 × 9 + (−42) + 8 = −7
 −27 + 54 + (−42) + 8 = −7
 −7 = −7

That completes the check for the original cubic. Now we plug (−1, −2) into the second origi-
nal equation:

 −6x + 2y = 2
 −6 × (−1) + 2 × (−2) = 2
 6 + (−4) = 2
 2 = 2
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Next, we check (−2, −5) in the second original equation:

 −6x + 2y = 2
 −6 × (−2) + 2 × (−5) = 2
 12 + (−10) = 2
 2 = 2

Finishing up, we check (−3, −8) in the second original equation:

 −6x + 2y = 2
 −6 × (−3) + 2 × (−8) = 2
 18 + (−16) = 2
 2 = 2

Are you confused (or bemused)?
Think back to the notion of multiplicity for the roots of certain quadratic, cubic, and higher-degree equa-
tions. Do you wonder if the same concept applies to the solutions of two-by-two systems when at least one 
of the equations is of degree 2 or more? Well, it does! If the equation we create by mixing has a root with 
multiplicity of 2 or more, the corresponding solution of the whole system has the same multiplicity. You’ll 
see this happen as you work out the last two practice exercises at the end of this chapter.

Here’s a challenge!
Solve these cubic equations as a two-by-two system:

y = 5x 3 + 3x 2 + 5x + 7

and

y = 2x 3 + x 2 + 2x + 5

Solution
Solving this problem requires some keen intuition, a lot of trial and error, or both. We are lucky in one 
respect, at least: These equations are already functions of x, so we have no morphing to do. We can directly 
mix the right sides to get

5x 3 + 3x 2 + 5x + 7 = 2x 3 + x 2 + 2x + 5

Let’s subtract the entire right side of this equation, as a single quantity, from both sides. That changes each 
term on the left and sets the right side equal to 0, giving us

3x 3 + 2x 2 + 3x + 2 = 0
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Now here’s the trick! If we spend enough time playing around with this, we’ll find that it can be factored into

(3x + 2)(x 2 + 1) = 0

When we set the first binomial equal to 0, we get

3x + 2 = 0

which resolves to x = −2/3. When we set the second binomial equal to 0, we get

x 2 + 1 = 0

Subtracting 1 from both sides gives us

x 2 = −1

This resolves to x = j or x = −j. We have found three roots to the cubic we got by mixing:

x = −2/3 or x = j or x = −j

We can substitute these roots into either of the original cubics. Let’s use the second one. For x = −2/3, 
we have

 y = 2x 3 + x 2 + 2x + 5

 = 2 × (−2/3)3 + (−2/3)2 + 2 × (−2/3) + 5

 = 2 × (−8/27) + 4/9 + (−4/3) + 5

 = −16/27 + 12/27 + (−36/27) + 135/27

 = 95/27

Our first solution is (x , y) = (−2/3, 95/27). For x = j, we have

 y = 2x 3 + x 2 + 2x + 5

 = 2j 3 + j 2 + 2j + 5

 = 2(−j ) + (−1) + j2 + 5

 = −j2 + (−1) + j2 + 5

 = −j2 + j2 + (−1) + 5

 = 0 + 4

 = 4

Our second solution is (x, y) = (j, 4). For x = −j, we have

 y = 2x 3 + x 2 + 2x + 5

 = 2(−j )3 + (−j )2 + 2(−j                                                   ) + 5

 = 2j + (−1) + (−j2) + 5
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 = j2 + (−1) + (−j2) + 5

 = j2 + −j2 + (−1) + 5

 = 0 + 4

 = 4

Our third solution is (x , y) = (−j, 4).

And finally ...

Now it’s time to check these solutions to be sure that they work. I can’t blame you if you’re 
weary of doing arithmetic, and you’d prefer to take these solutions on faith. That’s all right 
for now. Tomorrow, when your mind is rested, come back and check them for complemen-
tary credit.

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

 1.  Solve the following pair of equations as a two-by-two system, including the complex-
number solutions, if any. Let x be the independent variable, and then define y as a 
function of x in each equation:

3x + y − 1 = 0

  and

2x 2 − y + 1 = 0

 2.  Check the solution(s) to Prob. 1 in the original equations for correctness.

 3.  Solve the following pair of equations as a two-by-two system, including the complex-
number solutions, if any. Let x be the independent variable, and then define y as a 
function of x in each equation:

3x + y − 1 = 0

  and

2x 2 − 3x − y + 3 = 0

 4.  Check the solution(s) to Prob. 3 in the original equations for correctness.
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 5.  Solve the following pair of equations as a two-by-two system, including the complex-
number solutions, if any. Let x be the independent variable, and then define y as a 
function of x in each equation:

x 2 + x − y = −1

  and

x 2 − 2x − y = 2

 6. Check the solution(s) to Prob. 5 in the original equations for correctness.

 7.  Solve the following pair of equations as a two-by-two system, including the complex-
number solutions, if any. Let x be the independent variable, and then define y as a 
function of x in each equation:

x 2 + y = 0

  and

2x 3 − y = 0

  Explain why one of the solutions has multiplicity 2.

 8. Check the solution(s) to Prob. 7 in the original equations for correctness.

 9.  Solve the following pair of equations as a two-by-two system, including the complex-
number solutions, if any. Let x be the independent variable, and then define y as a 
function of x in each equation:

4x 3 + 2x 2 + 2x − 2y − 8 = 0

  and

3x 3 − 2x 2 + 4x − y − 5 = 0

  What is the multiplicity of each solution?

10. Check the solution(s) to Prob. 9 in the original equations for correctness.
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In this chapter, we’ll graph the systems we solved in Chap. 27 to see how they work in the 
realm of real numbers. Real solutions always appear as intersection points between the graphs 
of functions. However, when a two-by-two system has non-real complex solutions, those solu-
tions don’t show up as intersections between real-number graphs.

Linear and Quadratic
The first example we worked out in Chap. 27 involved a system of two equations, one linear 
and the other quadratic:

2x − y + 1 = 0

and

y = x 2 + x − 5

We called x the independent variable, so we rewrote the first equation as a function of x. The 
two-function system then became

y = 2x + 1

and

y = x 2 + x − 5

First, we tabulate some points

The graphs we’re about to create aren’t meant to be precise. We aren’t trying to pinpoint the real 
solutions using the graphs; we’ve already calculated them! The graphs serve only to geometrically 
illustrate the functions and their solutions.
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Table 28-1 compares some values of x, some values of the first function, and some values of the 
second function. The left-hand column contains selected values of x. The middle column contains 
values of the linear function that we get when we input the chosen values of x. The right-hand 
column contains values of the quadratic function that we get for the indicated values of x.

Are you confused?
Do you wonder why we chose the values in Table 28-1 as we did? The two solutions can be tabulated eas-
ily, so it makes sense to include them:

(x, y) = (−2, −3)

and

(x, y) = (3, 7)

These solutions are written down in boldface. When we graph the functions, the points corresponding to 
these solutions will be the points where the graphs intersect.

The other points are chosen strategically. We want to find ordered pairs that lie in the vicinity of the 
solutions. That means we should choose values of x that are somewhat less than −2, somewhere between 
−2 and 3, and somewhat larger than 3. Then, when we plot the graphs, we can expect to get a good view 
with the solutions near the middle. We calculate the values of the functions in the middle and right-hand 
columns by plugging in the values of x and going through the arithmetic.

Next, we plot the solution(s)

To plot the solutions of this system, we could use a strict Cartesian plane with each division 
on both axes equal to 1 unit. But we must cover a span of −4 to 5 for the independent vari-
able, and a span of −7 to 25 for the dependent variable, based on the function values we have 
found in Table 28-1. A true Cartesian graph having that span would be as big as a road map! 
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Table 28-1. Selected values for graphing the functions
y = 2x + 1 and y = x 2 + x − 5.

Bold entries indicate real solutions.

x 2x + 1 x 2 + x − 5

 −4 −7 7
 −3 −5 1
−2 −3 −3
 0 1 −5
 1 3 −3

3 7 7
 4 9 15
 5 11 25



We could shrink it by making each division represent, say, 5 units on both axes. But then the 
solutions wouldn’t show up well; they’d be too close together.

In situations like this, the best approach is to use rectangular coordinates, but not strict Car-
tesian coordinates. Let’s make each increment on the x axis represent 1 unit, and each increment 
on the y axis represent 5 units. When we make the axis increments different in size, we distort 
the slopes and contours of the lines and curves, but that’s not important here. Our goal is only 
to get a good fit for the ranges of the values we determined when we created Table 28-1, and a 
clear picture of how the graphs intersect. To begin, we plot the two solution points.

Finally, we plot the rest

Once we’ve plotted the solution points as dots on the coordinate grid, we can locate and plot 
the rest of the points in the table. If we do this on paper, we can use pencil and draw the points 
lightly, so we can erase them later.

As we draw the points, we must remember the increments we’ve chosen for each axis. 
They aren’t the same, and it’s easy to get them confused. It’s also important to keep track of 
which graph goes with which function!

We can draw the points for one graph with a pencil, fill in its line or curve with a pen, 
draw the points for the second graph with a pencil, fill in its line or curve with a pen, and then 
erase all the penciled-in points when the ink is dry. If we’ve chosen the axis increments wisely, 
the solutions will be near the center of the coordinate area, and the other points will be scat-
tered fairly well over the rest of it. Fig. 28-1 shows the final result.

Here’s a challenge!
By examining Fig. 28-1, describe how the linear function

y = 2x + 1

(shown by the solid line) can be modified to produce a system with no real solutions, assuming that the qua-
dratic function (shown by the dashed curve) stays the same, and assuming the slope of the line stays the same.

Solution
If we change the linear function so its graph doesn’t intersect the parabola, then the resulting two-by-two 
system will have no real solutions. Imagine moving the straight line downward in Fig. 28-1. As we do this, 
the solution points get closer together, eventually merging. At the moment the two points become one, 
the system has a single real solution with multiplicity 2.

The linear function is expressed in slope-intercept form, so we can see that the line has a slope of 2 and 
a y-intercept of 1. Each division on the y axis is 5 units, so we can see that the quadratic function has an 
absolute minimum of approximately −5. Suppose we change the linear function so the y-intercept is −10.
That will put the line completely below the parabola, and will give us the two-by-two system

y = 2x − 10

and

y = x 2 + x − 5
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If we solve this system, we’ll get two results, but they’ll both be non-real complex numbers. For extra 
credit, you can solve the “revised” system and see for yourself.

Are you confused?
Does the slope of the line in Fig. 28-1 seem smaller than 2? In a way, it is! In the algebraic sense the slope 
is 2, but in the geometric sense it’s only 2/5. The increments on the vertical axis are five times as large as 
the ones on the horizontal axis. That distorts the slopes and contours of the graphs, expanding everything 
horizontally (or compressing everything vertically) by a factor of 5. If we had used a true Cartesian plane, 
the line would have the steepness we should expect for a slope of 2 when drawn. The parabola would also 
look different; it would seem “five times sharper.”

Two Quadratics
In the second example in Chap. 27, we solved this system of quadratic equations in two variables:

4x 2 + 6x + 2y + 8 = 0

and

3x 2 + y + 5x − 11 = 0
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x

y

(–2,–3)

(3,7)

Figure 28-1  Graphs of y = 2x + 1 and y = x2 + x − 5. The first 
function is graphed as a solid line; the second function 
is graphed as a dashed curve. Real-number solutions 
appear as points where the line and the curve intersect. 
On the x axis, each increment is 1 unit. On 
the y axis, each increment is 5 units.



Again, we let x be the independent variable, and then we manipulated the equations to obtain 
y as a function of x in both cases. That gave us

y = −2x 2 − 3x − 4

and

y = −3x 2 − 5x + 11

First, we tabulate some points

Table 28-2 shows some values of x, along with the results of plugging those values into the 
above functions and churning out the arithmetic. We can start building the table by entering 
the two solutions, which we determined in Chap. 27. They are

(x, y) = (−5, −39)

and

(x, y) = (3, −31)

These solutions are written as bold numerals. The other values are chosen to produce 
graph points in the vicinity of the solutions. We can choose a couple of x-values less than 
−5, two more between −5 and 3, and two more larger than 3. Then we can calculate the 
values of the functions, and write them in the middle and right-hand columns of the 
table.
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Table 28-2. Selected values for graphing the functions
y = −2x 2 − 3x − 4 and y = −3x 2 − 5x + 11.

Bold entries indicate real solutions.

x −2x 2 − 3x − 4 −3x 2 − 5x + 11

 −10 −174 −239
 −7 −81 −101
 −5 −39 −39
 −2 −6 9
 0 −4 11
 3 −31 −31
 6 −94 −127
 9 −193 −277



Next, we plot the solution(s)

Once again, let’s use rectangular coordinates. In this case, the span of absolute values for the 
input (the independent variable x) is from 0 to 10, while the absolute values of the functions 
go as high as 277. Let’s make each increment on the x axis represent 2 units, and each incre-
ment on the y axis represent 50 units. With six “hash marks” going out from 0 in each of the 
four directions along the axes, that gives us absolute-value spans from 0 to 12 for x and 0 to 
300 for y, as shown in Fig. 28-2. We then plot the two solution points.

Finally, we plot the rest

We can fill in the graphs by plotting the remaining points indicated in Table 28-2. As before, 
it’s a good idea to draw the points for one graph with a pencil, fill in its curve with a pen, draw 
the points for the other graph with a pencil, fill in its curve with a pen, wait for the ink to 
dry, and finally run an eraser over the curves to get rid of the pencil marks. In Fig. 28-2, the 
approximate graph for

y = −2x 2 − 3x − 4

is a solid parabola, and the approximate curve for

y = −3x 2 − 5x + 11

is a dashed parabola.
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x

y

(–5,–39) (3,–31)

Figure 28-2  Graphs of y = −2x2 −  3x − 4 and y = −3x2 − 5x + 11. 
The first function is graphed as a solid curve; the 
second function is graphed as a dashed curve. Real-
number solutions appear as points where the curves 
intersect. On the x axis, each increment is 2 units. 
On the y axis, each increment is 50 units.



Here’s a challenge!
By examining Fig. 28-2, describe how the quadratic function

y = −2x 2 − 3x − 4

(shown by the solid curve) can be modified to produce a system with no real solutions, assuming that the 
other quadratic function (shown by the dashed curve) stays the same, and also assuming that the contour 
of the graph for the modified function stays the same.

Solution: Phase 1
We can move the solid parabola straight upward. As we do that, the two intersection points get closer 
together. When the solid parabola reaches a certain “critical altitude,” the intersection points merge, indi-
cating that the system has a single real solution with multiplicity 2. If we move the solid parabola upward 
beyond the “critical altitude,” the two parabolas no longer intersect. We can intuitively see this by compar-
ing the “sharpness” of the two curves. The solid parabola is not as “sharp” as the dashed one, so the two 
curves diverge once we have raised the solid parabola high enough to completely clear the dashed one.

Are you confused?
“How,” you ask, “can we change a quadratic function to move its parabola straight upward?” The answer is 
simple. We can increase the value of the stand-alone constant, leaving the rest of the equation unchanged. 
That increases the y-values of all the points without changing their x-values. Every point on the parabola 
is displaced straight upward by the same amount as every other point.

Solution: Phase 2
“All right,” you say. “How much must we increase the constant in the first function to be sure that the 
solid parabola clears the dashed parabola?” We can find out using some creative algebra. Look again at the 
process we used in Chap. 27 to derive an equation for the x-value of the solution to this system. We started 
with the two quadratic functions

y = −2x 2 − 3x − 4

and

y = −3x 2 − 5x + 11

When we mixed the right sides, we got

−2x 2 − 3x − 4 = −3x 2 − 5x + 11

which simplified to

x 2 + 2x − 15 = 0
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Examine the discriminant d for this equation:

d = 22 − 4 × 1 × (−15)

 = 4 − (−60)

 = 4 + 60

 = 64

How can we change the stand-alone constant, which is −15 right now, to bring the discriminant down 
to 0? We can find out by substituting 0 for d, and by substituting a letter constant for −15 in the above 
equation. If use k as the letter constant, we get

0 = 22 − 4 × 1 × k

which simplifies to

0 = 4 − 4k

and further to

4k = 4

This resolves to k = 1. In the quadratic we got by mixing, let’s change the stand-alone constant k from −15
to 1. That gives us

x 2 + 2x + 1 = 0

If we increase the constant any more, then d becomes negative, and the system has no real solutions.
Now we know that if we increase the stand-alone constant by 16 in the quadratic represented by the 

solid parabola in Fig. 28-2, the two solution points will merge in the graph. So let’s increase that constant 
by 17! When we do that, the function becomes

y = −2x 2 − 3x + 13

The graph of this function is a parabola with the same contour as the original one, but displaced by 17 units 
upward in the coordinate plane. For extra credit, try solving the system

y = −2x 2 − 3x + 13

and

y = −3x 2 − 5x + 11

and see for yourself that it has no real solutions.

Here’s another challenge!
By examining Fig. 28-2, describe how the quadratic function

= −3x 2 − 5x + 11
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(shown by the dashed curve) can be modified to produce a system with no real solutions, assuming that 
the other quadratic function (shown by the solid curve) stays the same, and also assuming that the contour 
of the graph for the modified function stays the same.

Solution
To cause the two solution points to merge, we must move the dashed parabola downward to the same 
extent we moved the solid parabola upward in the previous example. That means we must reduce the 
constant in the function for the dashed parabola by 16, giving us

y = −3x 2 − 5x − 5

If we reduce the constant to anything smaller than −5, the real solutions of the two-by-two system vanish, 
and the parabolas no longer intersect.

Enter the Cubic
The third time around in Chap. 27, we solved this two-by-two system:

x 3 + 6x 2 + 14x − y = −7

and

−6x + 2y = 2

As with all the other examples, we let x be the independent variable, and then we morphed to 
get y as a function of x in both cases. In this situation we got

y = x 3 + 6x 2 + 14x + 7

and

y = 3x + 1

We found these solutions:

(x, y) = (−1, −2)
(x, y) = (−2, −5)
(x, y) = (−3, −8)

First, we tabulate some points

Table 28-3 shows several different values of x, along with the results of plugging those values into 
the functions and calculating. All three solutions are included, and are written in bold. We also 
include two x- values less than −3, and two larger than −1. Because the x-values for the solutions 
are consecutive integers, it makes sense to choose consecutive integers on either side of them.
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Next, we plot the solution(s)

By examining Table 28-3, we can see that the span of absolute values for the input is 
from 0 to 5, while the absolute values of the functions go up to 38. This time, let’s make each 
increment on the x axis represent 1 unit, and each increment on the y axis represent 5 units. 
With six divisions going out from 0 to the left and six to the right, that gives us an absolute-
value span from 0 to 6 for x, and that’s enough. For y, we have six divisions going up and eight 
going down, and that’s sufficient to include all the function values in Table 28-3. Now that 
we’ve decided on the dimensions of the coordinate grid, we can plot the three solution points 
as shown in Fig. 28-3.
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Table 28-3. Selected values for graphing the functions
y = x 3 + 6x 2 + 14x + 7 and y = 3x + 1.
Bold entries indicate real solutions.

x x3 + 6x 2 + 14x + 7 3x + 1

 −5 −38 −14
 −4 −17 −11
 −3 −8 −8
 −2 −5 −5
 −1 −2 −2
 0 7 1
 1 28 4

x

y

(–3,–8)

(–2,–5)

(–1,–2)

Figure 28-3  Graphs of y = x3 + 6x2 +  14x + 7 and y = 3x + 1. 
The first function is graphed as a solid curve; the 
second function is graphed as a dashed line. Real-
number solutions appear as points where the curve 
and the line intersect. On the x axis, each increment 
is 1 unit. On the y axis, each increment is 5 units.



Finally, we plot the rest

We can fill in the graphs by plotting the remaining points in the table. In Fig. 28-3, the 
approximate graph for

y = x 3 + 6x 2 + 14x + 7

is the solid curve, and the approximate graph for

y = 3x + 1

is the dashed line.

Are you confused?
Figure 28-3 doesn’t show the relationship between the curve and the line very well in the vicinity of 
the solution points. If you want to get a “finer” graph in that region, you can plot points at intervals 
of 1/2 unit, 1/5 unit, or even 1/10 unit for x-values between −4 and 0 or between −5 and 1. You can 
also include more points “farther out,” say for x-values of −7, −10, and −15 on the negative side and 
5, 10, and 15 on the positive side. A programmable calculator, or a personal computer with calculat-
ing software installed, makes an excellent assistant for this process, and can save you from having to 
do a lot of tedious arithmetic. You might also find a site on the Internet that can calculate values of 
a linear, quadratic, cubic, or higher-degree function based on coefficients, the constant, and input 
values you choose.

Here’s a challenge!
In the “challenge” at the end of Chap. 27, we solved the following two cubic functions as a two-by-two system:

y = 5x3 + 3x 2 + 5x + 7

and

y = 2x 3 + x 2 + 2x + 5

We got one real solution, (x, y) = (−2/3, 95/27), and two complex-conjugate solutions. Draw a graph 
showing these two functions, along with the real solution point.

Solution
Table 28-4 shows several values of x, along with the resulting function values. The solution is in the middle, 
written in bold. The span of values for the input is from −3 to 2, while the span of values of the functions is 
from −116 to 69. Let’s make each increment on the x axis represent 1/2 unit, and each increment on the y
axis represent 10 units. With six divisions going out from 0 to the left and six to the right, that gives us a span 
from −3 to 3 for x. For y, we have eight divisions going up and 12 divisions going down, and that’s a span 
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of −120 to 80, more than enough to include all the function values in Table 28-4. To plot the solution point, 
we can convert the values to decimal form and go to a couple of decimal places. Then we get

(x, y) = (−0.67, 3.52)

This point is shown as a solid dot in Fig. 28-4. Once we’ve plotted it, we fill in the graphs of the functions. 
The approximate graph for

y = 5x 3 + 3x 2 + 5x + 7

is the solid curve, and the approximate graph for

y = 2x 3 + x 2 + 2x + 5

is the dashed curve.

Are you still confused?
Do you wonder about the “cubic curves” in Figs. 28-3 and 28-4? They’re a lot different from the graphs of 
quadratics! The graph of a cubic function always has one of six characteristic shapes, as shown in Fig. 28-5. 
They all look rather like distorted images of the letter “S” tipped on its side, perhaps flipped over back-
ward, and then extended forever upward and down.

Unlike a quadratic function, which has a limited range with an absolute maximum or an absolute 
minimum, a cubic function always has a range that spans the entire set of real numbers, although it can 
have a local maximum and a local minimum. The graph of a cubic function also has something else that 
you’ll never see in the graph of a quadratic: an inflection point, where the curvature reverses direction. The 
contour of the graph depends on the signs and values of the function’s coefficients and constant.

If you want to get familiar with how the graphs of various cubic functions look, you can conjure up a few 
cubic functions with assorted coefficients and constants. Then plot a couple of dozen points for each func-
tion, and connect the points with smooth curves. But don’t spend too much time at this. A book devoted to 
the art of graphing cubic and higher-degree functions could consume thousands of pages! You’ll learn more 
about graphing functions when you take a course in calculus.
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Table 28-4. Selected values for graphing the functions
y = 5x 3 + 3x2 + 5x + 7 and y = 2x 3 + x 2 + 2x + 5.

The bold entry indicates the real solution.

x 5x 3 + 3x 2 + 5x + 7 2x3 + x2 + 2x + 5

−3 −116 −46
−2 −31 −11
−1 0 2
−2/3 95/27 95/27
Approx. −0.67 Approx. 3.52 Approx. 3.52
0 7 5
1 20 10
2 69 29



Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these 
problems. Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the 
appendix may not represent the only way a problem can be figured out. If you think you 
can solve a particular problem in a quicker or better way than you see there, by all means 
try it!

 1.  Look again at Practice Exercise 1 and its solution from Chap. 27. Create a table for 
both functions based on x-values of −3, −2, −3/2, −1, −1/2, 0, 1, and 2. Here are the 
functions that came from the original equations:

y = −3x + 1

and

y = 2x 2 + 1

Use bold numerals to indicate the real solutions, if any exist.

 2.  Plot an approximate graph showing the curves based on the table you created when you 
worked out Prob. 1. On the x axis, let each increment represent 1/2 unit. On the y axis, 
let each increment represent 3 units. Draw the first function’s graph as a solid line or 
curve. Draw the second function’s graph as a dashed line or curve. Plot and label all real 
solution points, if any exist. 
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x

y

(–2/3,95/27)

Figure 28-4  Graphs of y = 5x3 + 3x2 +
5x + 7 and y = 2x3 + x2 + 
2x + 5. The first function is 
graphed as a solid curve; the 
second function is graphed 
as a dashed curve. The real-
number solution appears as 
the point where the curves 
intersect. On the x axis, each 
increment is 1/2 unit. On 
the y axis, each increment is 
10 units.



 3.  Look again at Practice Exercise 3 and its solution from Chap. 27. Create a table of 
values for both functions, based on x-values of −3, −2, −1, 0, 1, 2, 3, and 4. Here are 
the functions that came from the original equations:

y = −3x + 1
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A B

C D

E F

Local
max.

Local
min.

Local
min.

Local
max.

Figure 28-5  Characteristic shapes for graphs of cubic functions. At A 
and B, the curves maintain upward or downward trends, 
although they level off at the inflection points (solid dots). 
At C and D, the curves maintain upward or downward 
trends, and they don’t level off at the inflection points. At 
E and F, the curves trend mainly upward or downward but 
“back up” between local maxima and local minima, with 
inflection points in the “backward zones.”



and

y = 2x 2 − 3x + 3

Use bold numerals to indicate the real solutions, if any exist.

 4.  Plot an approximate graph showing the curves based on the table you created when you 
worked out Prob. 3. On the x axis, let each increment represent 1 unit. On the y axis, 
let each increment represent 5 units. Draw the first function’s graph as a solid line or 
curve. Draw the second function’s graph as a dashed line or curve. Plot and label all real 
solution points, if any exist.

 5.  Look again at Practice Exercise 5 and its solution from Chap. 27. Create a table of 
values for both functions, based on x-values of −4, −3, −2, −1, 0, 1, 2, 3, and 4. Here 
are the functions that came from the original equations:

y = x 2 + x + 1

and

y = x 2 − 2x − 2

Use bold numerals to indicate the real solutions, if any exist.

 6.  Plot an approximate graph showing the curves based on the table you created when you 
worked out Prob. 5. On the x axis, let each increment represent 1 unit. On the y axis, 
let each increment represent 4 units. Draw the first function’s graph as a solid line or 
curve. Draw the second function’s graph as a dashed line or curve. Plot and label all real 
solution points, if any exist.

 7.  Look again at Practice Exercise 7 and its solution from Chap. 27. Create a table of 
values for both functions, based on x-values of −3, −2, −1, 0, 1, 2, and 3. Here are the 
functions that came from the original equations:

y = −x 2

and

y = 2x 3

Use bold numerals to indicate the real solutions, if any exist.

 8.  Plot an approximate graph showing the curves based on the table you created when you 
worked out Prob. 7. On the x axis, let each increment represent 1/2 unit. On the y axis, 
let each increment represent 10 units. Draw the first function’s graph as a solid line or 
curve. Draw the second function’s graph as a dashed line or curve. Plot and label all real 
solution points, if any exist.
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 9.  Look again at Practice Exercise 9 and its solution from Chap. 27. Create a table of 
values for both functions, based on x-values of −3, −2, −1, 0, 1, 2, 3, and 4. Here are 
the functions that came from the original equations:

y = 2x 3 + x 2 + x − 4

and

y = 3x 3 − 2x 2 + 4x − 5

Use bold numerals to indicate the real solutions, if any exist.

 10.  Plot an approximate graph showing the curves based on the table you created when you 
worked out Prob. 9. On the x axis, let each increment represent 1 unit. On the y axis, 
let each increment represent 20 units. Draw the first function’s graph as a solid line or 
curve. Draw the second function’s graph as a dashed line or curve. Plot and label all real 
solution points, if any exist.
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Logarithms and exponentials show up in many branches of mathematics, sometimes unex-
pectedly. If you’re getting ready for more advanced subjects such as analysis, calculus, or engi-
neering mathematics, you should know something about logarithms and exponentials.

What Is a Logarithm?
A logarithm (sometimes called a log) of a quantity is a power to which a positive real constant 
is raised to get that quantity. The constant is called the base, which is usually 10 (the base 
familiar to most of us) or e, an irrational number called Euler’s constant.

Finding e

If your calculator lacks a key that displays e directly, here’s a trick that will put it there for you. 
Enter the number 1, then hit the inverse-function key or put a check in the appropriate box if 
you’re using a computer (it might be labeled “Inv” or “Rev”). Then hit the “ln” or “loge” key. 
You should see 2.71828 ... and then some more digits.

The log base

Imagine a positive real constant b. We raise b to some real variable power y, getting another 
real number x as the result. We can write this as

b y = x

where b > 0. In this equation, the exponent y is the base-b logarithm of x. When we say it that 
way, we write it as

y = logb x

A logarithm is an exponent in a situation where it is also the dependent variable in a function. 
The above equation tells us that y is a base-b logarithmic function of x.
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We can raise negative numbers to real-number powers, but this is rarely done with loga-
rithmic functions. We aren’t likely to encounter any “base-(−10)” or “base-(−e)” logarithms, 
for example, although technically there is no reason why such things can’t exist.

Common logs

Base-10 logarithms are also known as common logarithms or common logs. In equations, com-
mon logs are denoted by writing “log” with a subscript 10, and then the number, called the 
argument, for which you want to find the logarithm. Here are a few examples that you can 
verify with your calculator:

 log10 100 = 2
 log10 45 ≈ 1.653
 log10 10 = 1
 log10 6 ≈ 0.7782
 log10 1 = 0
 log10 0.5 ≈ −0.3010
 log10 0.1 = −1
 log10 0.07 ≈ −1.155
 log10 0.01 = −2

The squiggly equals sign means “is approximately equal to.” You’ll often see it in scientific and 
engineering papers, articles, and books. The first equation above is another way of writing

102 = 100

You could also say “The common log of 100 is equal to 2.” The second equation is another 
way of writing

101.653 ≈ 45

You could also say “The common log of 45 is approximately equal to 1.653.”

Natural logs

Base-e logarithms are also called natural logs or Napierian logs. In equations, the natural-log 
function is usually denoted by writing “ln” or “loge” followed by the argument. Here are some 
equations using the natural-log function, which you can check out with your calculator:

ln 100 ≈ 4.605
 ln 45 ≈ 3.807
 ln 10 ≈ 2.303
 ln 6 ≈ 1.792
 ln e = 1
 ln 1 = 0
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ln (1/e) = −1
 ln 0.5 ≈ −0.6931
 ln 0.1 ≈ −2.303
 ln 0.07 ≈ −2.659
 ln 0.01 ≈ −4.605

The first equation above is another way of writing

e4.605 ≈ 100

You would say it as “The natural log of 100 is equal to approximately 4.605.” The second 
equation is an alternative way writing

e3.807 ≈ 45

You could also say “The natural log of 45 is approximately equal to 3.807.”
The arguments in common or natural log functions don’t have to be whole numbers, 

fractions, or terminating decimals. You can have logs of arguments that are irrational, such as 
π, e, the positive square root of 2, or the cube root of 100.

Don’t let them confuse you!
Authors don’t all agree on what the notation “log” means. In some texts, natural logs (that is, base-e logs) 
are denoted by writing “log” without a subscript, followed by the argument. But in other texts and in most 
calculators, “log” means the common (base-10) log.

To avoid confusion, always include the base as a subscript whenever you write “log” followed by an 
argument. For example, write “log10” or “loge” instead of “log” all by itself. You don’t have to use a subscript 
when you write “ln” for the natural log.

If you aren’t sure what the “log” key on a calculator does, do a trial calculation to find out. If the “log” 
of 10 equals 1, then it’s the common log. If the “log” of 10 equals an irrational number slightly larger than 
2.3, then it’s the natural log.

Here’s a challenge!
Compare the common logarithms of 0.01, 0.1, 1, 10, and 100. Then compare the natural logarithms of 
those same arguments.

Solution
Note that 0.01 = 10−2, 0.1 = 10−1, 1 = 100, 10 = 101, and 100 = 102. Therefore:

log10 0.01 = −2

 log10 0.1 = −1

 log10 1 = 0

 log10 10 = 1

 log10 100 = 2
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These values are all exact! But now suppose you want to compare the natural logs of these same five argu-
ments. The base-e logarithm of a number is the power of e that produces that number. You must use a 
calculator to find natural logs. The results are as follows, rounded off to four decimal places in each case 
(except the natural log of 1, which is an exact value):

ln 0.01 ≈ −4.6052

ln 0.1 ≈ −2.3026

ln 1 = 0

ln 10 ≈ 2.3026

ln 100 ≈ 4.6052

The log of 1 is always equal to 0, no matter what the base, because any positive real number raised to the 
zeroth power is equal to 1.

How Logarithms Work
With logarithms, you can convert products into sums, ratios into differences, powers into 
products, and roots into ratios.

Changing a product to a sum

Imagine two positive real number variables x and y. The logarithm of their product, no matter 
what the base b happens to be (as long as b > 0), is always equal to the sum of the logarithms 
of the individual numbers. You can write this as

logb xy = logb x + logb y

Let’s look at a numerical example. Consider the arguments exact. Use your calculator to fol-
low along:

log10 (3 × 4) = log10 3 + log10 4

Working out both sides and approximating the results to four decimal places, you should get

log10 12 ≈ 0.4771 + 0.6021
 ≈ 1.0792

You shouldn’t expect to get perfect answers every time you use logarithms, because the results 
are almost always irrational numbers. That means they are endless, non-repeating decimals. 
Approximation is the best you can do.

Changing a ratio to a difference

Again, suppose that x and y are positive real numbers. Then the logarithm of their ratio, regard-
less of the base b, is equal to the difference between the logarithms of the individual numbers:

logb (x /y) = logb x − logb y
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You can work out an example using the same numerical arguments as before. Again, follow 
along with your calculator:

log10 (3 /4) = log10 3 − log10 4

Working out both sides and approximating the results to four decimal places:

log10 0.7500 ≈ 0.4771 − 0.6021
 ≈ −0.1250

Are you confused?
If you take the base-10 log of 0.7500 directly with your calculator and round it off to four decimal places, 
you’ll see −0.1249, not −0.1250. What’s going on? Why is there a discrepancy between these two methods 
of determining the base-10 log of 3/4? It’s not a flaw in the calculator, and it’s not your imagination. This 
is an example of a phenomenon called rounding error, which often occurs when repeated calculations are 
done using approximate values. This isn’t the last time you’re going to see it!

Changing a power to a product

Logarithms simplify the raising of a number to a power. This tactic is useful when the argu-
ment does not have two whole numbers, and it’s especially handy when irrationals enter the 
scene. Let x be a positive real number, and let y be any real number. The base-b logarithm of 
x raised to the power y can be rearranged as a product:

logb x y = y logb x

Again, this works for any positive base b. Here’s an example using the same arguments as 
before, carried out to four decimal places:

 log10 (34) = 4 log10 3
log10 81 ≈ 4.0000 × 0.4771

 ≈ 1.9084

Now let’s try an example in which both of the numbers in the input argument are decimals. 
We’ll go to three places:

log10 (2.6351.078) = 1.078 log10 2.635
 ≈ 1.078 × 0.421
 ≈ 0.454

We’ll return to this result later.
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Changing a reciprocal to a negative

The logarithm (to any base b) of the reciprocal of a number is equal to the negative of the 
logarithm of that number. Stated mathematically, if x is a positive real number, then

logb (1/x) = −(logb x)

This is a special case of division simplifying to subtraction. Now let’s look at a numerical 
example. Suppose x = 3 (exactly) and we use natural logs, as follows:

ln (1/3) = −(ln 3)

Using a calculator, we can evaluate both expressions. This time, let’s go to nine decimal places.

 ln 0.333333333 ≈ −(ln 3.000000000)
 −1.098612290 ≈ −1.098612289

We have some rounding error here, but it’s only at the ninth decimal place, equivalent to one 
part in 1,000,000,000!

Reciprocal within an exponent

What happens when we have a reciprocal in an exponent? Suppose x is a positive real number, 
and y is any real number except zero. Then the logarithm (to any positive base b) of the yth
root of x (also denoted as x to the 1/y power) is equal to the log of x, divided by y :

logb (x1/y) = (logb x) / y

Let’s try this with x = 8 and y = 1/3, considering both values exact, and using natural logs 
evaluated to five decimal places. We get

ln (81/3) = (ln 8) / 3

We know that the 1/3 power (or cube root) of 8 is equal to 2. Therefore

 ln 2 = (ln 8) / 3
 0.69315 ≈ 2.07944 / 3
 0.69315 = 0.69315

The results agree to all five decimal places here, so we can write a plain equals sign instead of 
a squiggly one.

Log conversions

Here are a couple of useful rules for converting natural logs to common logs and vice-versa. 
You’ll sometimes have to do this, especially if you get into physics or engineering.
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Suppose that x is a positive real number. The common logarithm of x can be expressed in 
terms of the natural logarithms of x and 10. If we go to six decimal places to approximate the 
natural log of 10, we have

 log10 x = (ln x) / (ln 10)
 ≈ (ln x) / 2.302585
 ≈ 0.434294 ln x

Let’s try a numerical example. Let x = 3.537. Working to three decimal places, we can use a 
calculator to find

ln 3.537 ≈ 1.263

We multiply by 0.434294 and round the answer off to three decimal places, getting

0.434294 × 1.263 ≈ 0.549

We can compare this with the common log of 3.537 as a calculator determines it, again 
rounding off to three decimal places:

log10 3.537 ≈ 0.549

Now let’s go the other way. Suppose x is a positive real number. The natural logarithm of x can 
be expressed in terms of the common logarithms of x and e. If we go to six decimal places to 
approximate the common log of e, we have

 ln x = (log10 x) / (log10 e)
 ≈ (log10 x) / 0.434294
 ≈ 2.302588 log10 x

If you’re astute, you’ll notice that this value differs slightly from the constant 2.302585 we 
obtained above. Again, this is an example of rounding error. To demonstrate with a calculator, 
the reciprocal of 0.434294 comes out as 2.302588 when you round it off to six decimal places. 
But if you take the constant derived from ln 10 earlier, which is 2.302525 when rounded to 
six decimal places, its reciprocal comes out as 0.434294.

Are you confused?
“Is there any way,” you ask, “to eliminate rounding errors in calculations?” The answer is, “Yes, sometimes; 
but it can be a little tricky.” When working with irrational numbers, or any other numbers where the 
values can be approximated but never exactly written down, you can carry out your calculations to many 
more decimal places than necessary until the very end, and then—but only then—round the values off to 
the number of places you want.
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If you have a high-end calculator that goes to two or three dozen digits such as the sort found in some 
computers, you can leave all the displayed digits in the figures as you go through the arithmetic. Using 
the memory store and recall functions, those extra digits can be kept in the process, and that will keep the 
rounding error extremely small. When you get the final answer and round it off to, say, six decimal places 
instead of the two or three dozen, the error won’t show up. You can play around with a good calculator to 
see how this works.

Are you still confused?
You might also ask, “What about the logarithm of 0, or of any negative number?” The answer is,  “These 
are not defined in the set of real numbers, no matter what the base.” To understand why, check out what 
happens if you try to calculate the common log of −2. Suppose that

log10 −2 = x

This can be rewritten as

10x = −2

What’s the value of x ? That’s hard to say, but it’s not a real number! No matter what real number you 
choose for x, the value of 10x is positive. If you change −2 to any other negative number, or to 0, you run 
into the same problem. It’s impossible to find any real number x, such that 10x is not a positive real.

Here’s a challenge!
Find the natural log of 238.967 from its common log using the above conversion formula. Express your 
answer to three decimal places. Then take the natural log of 238.967 directly with your calculator, round 
it off to three decimal places, and compare that result with the first one.

Solution
Working with a calculator, you should get

log10 238.967 ≈ 2.378

Now remember the conversion formula:

ln x ≈ 2.302588 log10 x

In this example, you should multiply 2.302588 by 2.378. When you round the answer off to three decimal 
places, you should get

2.302588 × 2.378 ≈ 5.476

When you take the natural log of 238.967 directly with a calculator and then round off to three decimal 
places, you’ll see that

ln 238.967 ≈ 5.476
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What Is an Exponential?
The exponential of a quantity is what you get when you raise a certain positive real number, 
called the base, to a power equal to that quantity. As is the case with logarithms, the two bases 
you’ll most often see are 10 and e. When Euler’s constant, e, is raised to a variable power, it’s 
often called the exponential constant.

The exponential base

An exponential function has a base and an exponent, just as a logarithm has. In fact, an exponen-
tial function is an “inside-out” way of looking at a logarithmic function! Suppose you have three 
real numbers b, x, and y, where b > 0, and you raise b to the xth power to get y, like this:

y = b x

Then y is the base b exponential of x. In the expression 102 = 100, 10 is the base and 100 is the 
exponential. In the expression e3 ≈ 20.0855, e is the base and 20.0855 is the exponential.

Here’s a twist!
It’s possible to raise imaginary numbers to real-number powers and get negative numbers; you’ve already 
learned about this. You could talk about base-j exponentials, for example, and make mathematical sense. 
Consider this:

j 2 = −1

You won’t be likely to hear anybody state this fact as “Minus 1 is the base-j exponential of 2.” But theoreti-
cally, it’s a valid statement.

Common exponentials

Base-10 exponentials are also known as common exponentials. Here are a few examples that you 
can verify with your calculator, rounding to three decimal places except in those cases when 
the resultants are exact:

 102 = 100
 101.478 ≈ 30.061
 101 = 10
 100.8347 ≈ 6.834
 100 = 1
 10−0.5 ≈ 0.316
 10−1 = 0.1
 10−1.7 ≈ 0.020
 10−2 = 0.01
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In the first equation, 2 is the argument (the value on which the function depends), and 
100 is the resultant. You would say is as “The common exponential of 2 is equal to 100.” In the 
second equation, you would say “The common exponential of 1.478 is approximately 30.061.” 
As with logarithms, the arguments in an exponential function need not be whole numbers. They 
can even be irrational; you could speak of 10π, for example. (It’s approximately equal to 1,385.)

Natural exponentials

Base-e exponentials are also called natural exponentials. Here are some examples using the 
same arguments as above, rounding to three decimal places except for e0, which is exactly 1:

e 2 ≈ 7.389
 e1.478 ≈ 4.384
 e1 ≈ 2.718
 e0.8347 ≈ 2.304
 e0 = 1
 e−0.5 ≈ 0.607
 e−1 ≈ 0.368
 e−1.7 ≈ 0.183
 e−2 ≈ 0.135

Logarithms vs. exponentials

The exponential function is the inverse of the logarithm function, and vice-versa. When two 
functions are inverses, they “undo” each other, as long as both functions are defined for the 
all the arguments of interest. A logarithm can be “undone” by the exponential function of the 
same base. The reverse of this is also true: an exponential can be “undone” by the log function 
of the same base.

Sometimes, the common exponential of a quantity is called the common antilogarithm
(antilog10) or the common inverse logarithm (log−1) of that number. The natural exponential 
of a quantity is sometimes called the natural antilogarithm (antiln) or the natural inverse loga-
rithm (ln−1) of that number.

We can illustrate the relationship between a common log and a common exponential 
with two equations. If we let the abbreviation “log” represent the base-10 logarithm, then

log (10x) = x

for any real number x, and

10(log y) = y

for any positive real number y. A similar pair of equations holds for the natural logarithms. We 
can replace 10 with e, and replace “log” with “ln” to get

ln (ex) = x
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for any real number x, and

e(ln y) = y

for any positive real number y.

An example

Now let’s see how a common antilog can be used to find the value of a non-whole number raised 
to the power of another non-whole number. Recall the example set out earlier in this chapter:

log10 (2.6351.078) = 1.078 log10 2.635
 ≈ 1.078 × 0.421
 ≈ 0.454

If we get rid of all the intermediate expressions, we have

log10 (2.6351.078) ≈ 0.454

Taking the common antilog of both sides, we get

antilog10 [log10 (2.6351.078)] ≈ antilog10 0.454

We can use a calculator to find the common antilog of 0.454, and simplify the left side of the 
equation based on the fact that the antilog function “undoes” the log function. When we do 
that, we get

2.6351.078 ≈ 2.844

We can use the “x^y” key in a calculator to verify the above result. When I enter the original 
numbers into my calculator and use that key, I get

2.6351.078 ≈ 2.842

This answer disagrees from the previous answer by 0.002 (or 2 parts in 1,000) because we 
rounded off the calculations at every step, introducing a rounding error.

The log-antilog scheme is the way most calculators work out powers when the input 
values are not whole numbers. Before the invention of logs and antilogs, expressions such as 
2.6351.078 were mysterious, indeed. We can use logs and antilogs of any base to evaluate any 
number raised to the power of any other number, as long as the log and the antilog are both 
defined for all the arguments.

Another example

What do you get if you raise e to the power of π? You should remember from basic geometry 
what π (the lowercase Greek letter called “pi”) means. It’s the ratio of any circle’s circumference 
to its diameter, and is an irrational number equal to approximately 3.14159.
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Suppose you have a calculator that can’t directly raise one number to the power of another, 
but it does have a common log key. You can calculate eπ using the rule for converting a power 
to a product:

log10 eπ = π log10 e

Take the value 2.71828 as an approximation of e, and 3.14159 as an approximation of π.
Then, going to five decimal places in each step, the above equation becomes

log10 e π ≈ 3.14159 log10 2.71828
 ≈ 3.14159 × 0.43429
 ≈ 1.36436

When you take the common antilog of this, you’ll get the value of eπ, because

antilog10 (log10 eπ) = e π

Calculating, you should get

antilog10 1.36436 ≈ 23.13982

This makes intuitive sense. Think of it like this: Because π is a little more than 3, and because e
is a little less than 3, the value of e π should be somewhere near 33, which is 27. It’s not terribly 
close, but it’s “in the ball park”!

If your calculator has a key for raising one number to the power of another (in general), 
you can check this out. When I input the numbers into my calculator, I get

2.718283.14159 ≈ 23.14058

As usual, rounding error has crept into this process. If you like, you can repeat this exercise, 
letting your calculator keep all the extra digits it can along the way, and rounding off to five 
decimal places when you get to the very end.

Here’s a challenge!
Using a calculator, find πe. Use the same process as you did to find eπ in the example you just finished. 
Round off the values to five decimal places. Verify this result by using the “x ^y” key if your calculator 
has one.

Solution
Once again, you can take advantage of the rule for converting a power to a product. This time, you have

log10 π e = e log10 π
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Consider π equal to 3.14159, and consider e equal to 2.71828. Then

log10 πe ≈ 2.71828 log10 3.14159

 ≈ 2.71828 × 0.49715

 ≈ 1.35139

When you take the common antilog of this, you’ll get πe because

antilog10 (log10 πe) = πe

Calculating, you should get

antilog10 1.35139 ≈ 22.45898

When I input the numbers into my calculator and use the “x ^y” key, I get

3.141592.71828 ≈ 22.45906

Rounding error strikes again! And as before, if you wish, you can see for yourself how this error shrinks to 
the vanishing point if you let your calculator keep all of its extra digits until the final step.

How Exponentials Work
In most real-life applications of exponentials, the base b is either 10 or e. However, once in a 
while you’ll come across a situation where b is some other positive real number. This section 
describes the basic properties that hold for exponentials in general.

Reciprocal vs. negative exponent

Suppose that x is some real number. The reciprocal of the exponential of x is equal to the 
exponential of the negative of x, as follows:

1 / (b x) = b−x

when b > 0. You should recognize this from your work with powers and roots. Here’s a famil-
iar example. You know that 1/8 is equal to 1 / (23). This is the same as saying that 1/8 is equal 
to 2−3. You also know that 1/100 equals 1 / (102), which is the same as saying that 1/100 
equals 10−2. Now consider this, rounded to four decimal places:

1 / (e 3) ≈ 1 / (2.7183)
 ≈ 1 / 20.079
 ≈ 0.0498

How Exponentials Work  491



Compare the above with the result of entering −3 into a scientific calculator, then hitting 
“Inv,” then hitting “ln,” and finally rounding to four decimal places:

e−3 ≈ 0.0498

Rounding error stayed out of this little exercise!

Product vs. sum

Exponential functions can express the relationship between sums and products, just as loga-
rithms do. Suppose that x and y are real numbers. Then

b xb y = b (x+y)

when b > 0. To demonstrate, let b = 10, x = 4, and y = −6. We can plug in the numbers for the 
product of exponentials and get and get

104 × 10−6 = 10,000 × 0.000001
 = 0.01

When we evaluate the right side, we get

10[4+(−6)] = 10(4−6)

 = 10−2

 = 0.01

The results agree. You’ll find that this is always true, no matter what base and arguments you 
use, as long as the base is positive. Of course, if you get nonterminating decimals for any of 
the values in the calculation, you should expect some rounding error.

Ratio vs. difference

Again, suppose that x and y are real numbers. Then

bx / b y = b(x−y)

when b > 0. Using the same numerical values as before, we can demonstrate this. We plug in 
the numbers on the left side of the equation and get

104 / 10−6 = 10,000 / 0.000001
 = 10,000 × 1,000,000
 = 10,000,000,000
 = 1010

Then we can evaluate the right side to see that

10[4−(−6)] = 10(4+6)

 = 1010
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Ratio in an exponent

Here’s a more complicated property of exponentials. Let x and y be real numbers, with the 
restriction that y cannot be equal to 0. Then

b(x /y) = (bx)(1/y)

when b > 0. Let’s try an example where the base b is 10, with exponents x = 4 and y = 7. 
Evaluating the left side first, letting 4/7 ≈ 0.5714 and using the “xy” or “x ^y” function key on 
a calculator, we get

10(4/7) ≈ 100.5714

 ≈ 3.727

Alternatively, we can enter 0.5714, hit the “Inv” key, and then hit “log” to find 10 to the 
power of 0.5714. Now when we plug the numbers into the right side of the general equation 
and work it out, we obtain

(104)(1/7) = 10,000(1/7)

To work this out on a calculator, we must first figure 1/7 to four decimal places. That gives 
us 0.1429. Then, we enter 10,000, hit the “x y” or “x^y” key, and enter 0.1429. The result is 
3.729. There’s a discrepancy, because we’ve taken a rounding error to the seventh power!

Power of a power vs. product

Exponentials can show the relationship between a “power of a power” and a product. Suppose 
that x and y are real numbers. Then

(bx)y = b(xy)

when b > 0. To demonstrate this, let b = e, x = 2, and y = 3. Let’s evaluate the left side first, using 
2.718 as the value of e and going to three decimal places during the calculation process:

(e2)3 ≈ (2.7182)3

 ≈ 7.3883

 ≈ 403.256

Now the right side:

e(2×3) = e6

 ≈ 2.7186

 ≈ 403.178
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If we let the calculator keep all its extra digits during the calculation process, we don’t get the 
rounding error when we go back to three decimal places at the end. (Try it and see.) Now let’s 
use b = 10 instead of b = e. In that case, the left side becomes

(102)3 = 1003

 = 1,000,000
 = 106

and the right side becomes

10(2×3) = 106

There’s no rounding error here, because the values are exact throughout!

Mixing exponentials in a product

We can express the product of a common exponential and a natural exponential a “mutant 
exponential” whose base is 10 times e. If x is the argument of both exponentials, then

(10x)(ex) = (10e)x

This is an adaptation of the power of product rule from Chap. 9. Let’s try a numerical exam-
ple. Let x = 4. If we express the value of e to five decimal places, the left side of the above 
equation works out as

(104)(e4) ≈ 10,000 × 2.718284

 ≈ 10,000 × 54.59800
 ≈ 545,980

and the right side becomes

(10e)4 ≈ (10 × 2.71828)4

≈ 27.18284

≈ 545,980

Mixing exponentials in a ratio

How about ratios of mixed common and natural exponentials? If x is a real number, then

10x / e x = (10/e)x

This is an adaptation of the power of quotient rule from Chap. 9. We can work this out using 
x = 4, as in the previous example. Expressing the value of e to five decimal places but rounding 
off our final answer to only two decimal places, the left side of the above equation becomes 

104 / e4 ≈ 10,000 / 2.718284

 ≈ 10,000 / 54.59800
 ≈ 183.16
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and the right side becomes

(10/e)4 ≈ (10 / 2.71828)4

 ≈ 3.678804

 ≈ 183.16

Now let’s invert this ratio. Suppose x is a real number. Then we can write

e x / 10x = (e /10)x

Again, let’s use x = 4 and go through this with a calculator. Expressing the value of e to five 
decimal places and leaving our final answer at five decimal places too, the left side of the above 
equation works out as

e4 / 104 ≈ 2.718284 / 10,000
 ≈ 54.59800 / 10,000
 ≈ 0.00546

and the right side works out as

(e /10)4 ≈ (2.71828 / 10)4

 ≈ 0.2718284

 ≈ 0.00546

Are you confused?
To get a “snapshot” of how exponentials of different bases work out, here’s a trick to get the general idea. 
First, we determine the values of 1 to the powers of −4, −3, −2, −1, 0, 1, 2, 3, and 4. (That’s right, the base 
is 1!) Then we do the same thing with the bases 2, e, and 10. Finally, we compare the values as shown in 
Table 29-1. For the bases 1, 2, and 10, all the results are exact. For the base e, we approximate everything 
to four decimal places except e0, which is exactly 1.

Here’s a challenge!
Find the number whose natural exponential function value is exactly 1,000,000, and the number whose 
natural exponential function value is exactly 0.0001.

Solution
To solve this problem, we must be sure that we know what we’re trying to get! Suppose we call the solution 
x. In the first case, we can solve the following equation for x :

e x = 1,000,000
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Taking the natural logarithm of each side, we get

ln (e x) = ln 1,000,000

 x = ln 1,000,000

This simplifies to a matter of finding a natural logarithm with a calculator. Rounded off to two decimal 
places, we have

ln 1,000,000 ≈ 13.82

In the second case, we must solve the following equation for x :

e x = 0.0001

Taking the natural logarithm of each side, we get

ln (e x) = ln 0.0001

 x = ln 0.0001

This simplifies, as in the first case, to a matter of finding a natural logarithm with a calculator. When we 
do that, and then round off to two decimal places, we get

ln 0.0001 ≈ −9.21

Practice Exercises
This is an open-book quiz. You may (and should) refer to the text as you solve these problems. 
Don’t hurry! You’ll find worked-out answers in App. C. The solutions in the appendix may 
not represent the only way a problem can be figured out. If you think you can solve a particu-
lar problem in a quicker or better way than you see there, by all means try it!

Table 29-1.  Comparison of exponentials for bases 1, 2, e, and 10. Values for base e
are approximate except for e0, which is exactly 1.

x 1x        2x        ex      10x

−4 1   0.0625   0.0183 0.0001
−3 1   0.125   0.0498 0.001
−2 1   0.25   0.1353 0.01
−1 1   0.5   0.3679 0.1
0 1   1    1 1
1 1   2   2.7183 10
2 1   4   7.3891 100
3 1   8 20.0855 1,000
4 1 16 54.5982 10,000
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 1.  Let x = 2.3713018568 and y = 0.902780337. Find xy to three decimal places using 
common logarithms.

 2.  Approximate the product xy from Prob. 1 using natural logarithms. Show that the result 
is the same as that obtained with common logs when rounded off to three decimal 
places.

 3.  The power gain of an electronic circuit, in units called decibels (abbreviated dB), can be 
calculated according to this formula:

G = 10 log (Pout/Pin)

   where G is the gain, Pout is the output signal power, and Pin is the input signal power, 
both specified in watts. Suppose the audio input to the left channel of high-fidelity 
amplifier is 0.535 watts, and the output is 23.7 watts. What is the power gain of this 
circuit in decibels? Round off the answer to the nearest tenth of a decibel.

 4.  Suppose the audio output signal in the scenario of Prob. 3 is run through a long length 
of speaker wire, so instead of the 23.7 watts that appears at the left-channel amplifier 
output, the speaker only gets 19.3 watts. What is the power gain of the length of 
speaker wire, in decibels? Round off the answer to three decimal places.

 5.  If a positive real number increases by a factor of exactly 10, how does its common (base-10) 
logarithm change?

 6. Show that the solution to Prob. 5 is valid for all positive real numbers.

 7.  If a positive real number decreases by a factor of exactly 100 (becomes 1/100 as great), 
how does its common logarithm change?

 8. Show that the solution to Prob. 7 is valid for all positive real numbers.

 9.  If a positive real number is divided by a factor of 357, how does its natural (base-e)
logarithm change? Express the answer to two decimal places.

 10. Show that the solution to Prob. 9 is valid for all positive real numbers.
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CHAPTER

3 0

Review Questions 
and Answers

Part Three
This is not a test! It’s a review of important general concepts you learned in the previous nine 
chapters. Read it though slowly and let it “sink in.” If you’re confused about anything here, or 
about anything in the section you’ve just finished, go back and study that material some more.

Chapter 21

Question 21-1

There are two distinct numbers that, when squared, produce −1. What are those two numbers?

Answer 21-1

One of them is the unit imaginary number, which we call j. That’s the engineer’s and applied 
mathematician’s notation. Many mathematics texts use the letter i to represent it. The other is 
the negative of the unit imaginary number, −j.

Question 21-2

How can we show that squaring −j produces the same result as squaring j?

Answer 21-2

By definition, we know that

j 2 = −1

We can multiply the left side of this equation by (−1)2 without having any effect on its value, 
because (−1)2 = 1. When we do that, we get

(−1)2j 2 = −1
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The power of product rule allows us to rewrite the left side of this equation, so it becomes

[(−1)j ]2 = −1

But (−1)j is the same thing as −j, so we can simplify further to get

(−j )2 = −1

This is the same result as we obtain by squaring j.

Question 21-3

How is an imaginary number “put together”?

Answer 21-3

An imaginary number is the product of j and a real number. Suppose we call the real 
number b. If b is positive, then we write the product of j and b as jb. If b is negative, we write 
the product as −jb. (We always put the minus sign first.) If b = 0, then we can write the product 
as j0. But because j0 = 0, we would more likely write j0 simply as 0.

Question 21-4

How can we show that j3 + j7 is the same as j7 + j3, assuming that the familiar distributive 
law of arithmetic works with the unit imaginary number?

Answer 21-4

When we apply the distributive law for multiplication over addition “backward” to the first 
expression, we get

j3 + j7 = j(3 + 7)

The commutative law for addition tells us that 3 + 7 = 7 + 3. By substitution on the right 
side, we get

j3 + j7 = j(7 + 3)

Applying the distributive law “forward” on the right side, we get

j3 + j7 = j7 + j3

Question 21-5

How can we show, again assuming that the distributive law works with the unit imaginary 
number, that if a and b are any two real numbers, then ja + jb is the same as jb + ja?

Answer 21-5

We can use the same proof procedure as we did in Answer 21-4, using letter constants instead 
of numbers! The distributive law tells us that

ja + jb = j(a + b)
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The commutative law allows us to rewrite this as

ja + jb = j(b + a)

and the distributive law, applied again, gives us

ja + jb = jb + ja

Question 21-6

What is the absolute value of j25? What is the absolute value of −j25?

Answer 21-6

Remember that in general, if b is any nonnegative real number, then

|jb| = b

and

|−jb| = b

The absolute value of j25 and the absolute value of −j25 are therefore both equal to 25.

Question 21-7

How is a complex number “put together”?

Answer 21-7

A complex number is the sum of a real number and an imaginary number. If we have two real 
numbers a and b, then a + jb is a complex number. Conversely, any complex number can be 
written in the form a + jb, where a and b are real numbers. There are no restrictions on the 
values of a or b. They can be negative, positive, or 0.

Question 21-8

What is the sum of the complex numbers a1 + jb1 and a2 + jb2, where a1, a2, b1, and b2 are real 
numbers?

Answer 21-8

When we want to add two complex numbers, we add the real parts and the complex parts 
separately. Therefore,

(a1 + jb1) + (a2 + jb2) = (a1 + a2) + (jb1 + jb2)
 = (a1 + a2) + j(b1 + b2)

Question 21-9

What is the product of the complex numbers a1 + jb1 and a2 + jb2, where a1, a2, b1, and b2 are 
real numbers?



Answer 21-9

When we want to multiply one complex number by another, we treat both factors as binomi-
als, keeping in mind the fact that j 2 = −1. Therefore,

 (a1 + jb1)(a2 + jb2) = a1a2 + ja1b2 + jb1a2 + j 2b1b2

 = a1a2 + ja1b2 + jb1a2 − b1b2

 = a1a2 − b1b2 + ja1b2 + jb1a2

 = (a1a2 − b1b2) + j(a1b2 + b1a2)

Question 21-10

What is the conjugate of a complex number a + jb, where a and b are real numbers? What 
happens when we add a complex number to its conjugate? What happens when we multiply 
a complex number by its conjugate?

Answer 21-10

We can get the conjugate of any complex number a + jb by reversing the sign of the imagi-
nary part. Therefore, a + jb and a − jb are conjugates of each other. When we add a complex 
number to its conjugate using the rule from Answer 21-8, we get

(a + jb) + (a − jb) = (a + a) + (jb − jb)

 = 2a + j0

 = 2a

  When we multiply a complex number by its conjugate using the rule from Answer 21-9, 
we get

 (a + jb)(a − jb) = a2 − jab + jba − j 2b2

 = a2 − jab + jab + b2

 = a2 + b2

Chapter 22

Question 22-1

What is the polynomial standard form for a quadratic equation in the variable x?

Answer 22-1

When a quadratic equation in x is written in polynomial standard form, it’s formatted like this:

ax 2 + bx + c = 0
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where a and b are coefficients of the variable x, and c is a constant. For the equation to be a 
quadratic, the coefficient of x 2 (in this case a) must not be equal to 0.

Question 22-2

How can we write the following equation as a quadratic in polynomial standard form when 
a1, a2, b1, and b2 are real numbers, and x is the variable?

(a1x + b1)(a2x + b2) = 0

Answer 22-2

We can start by multiplying the two binomials on the left side together, using the product of 
sums rule from Chap. 9. When we do that, we get

a1a2x 2 + a1b2x + b1a2x + b1b2 = 0

which can be rearranged to obtain

(a1a2)x 2 + (a1b2 + b1a2)x + b1b2 = 0

This equation is in polynomial standard form, provided a1 ≠ 0 and a2 ≠ 0. The coefficient a
from the “template” (Answer 22-1) is the quantity a1a2. The coefficient b from the “template” 
is the quantity (a1b2 + b1a2). The constant c from the “template” is the quantity b1b2.

Question 22-3

Which of the following equations are quadratics in one variable? Which are not?

x 2 = 8x + 3x3

−3x = 7x 2 − 12
x 2 + 2x = 7 − x

x4 − 2 = − 8x 2 − 7x 3

13 + 3x = 12x 2

Answer 22-3

A quadratic equation in one variable always contains a nonzero multiple of the variable squared, 
and no higher powers of the variable. There may also be terms containing the variable itself (to 
the first power) along with terms that are simple constants. On that basis, the second, third, 
and fifth equations are quadratics in one variable. The first and fourth equations are not.

Question 22-4

What are the roots of the following quadratic equation, where a1, a2, b1, and b2 are real num-
bers, and x is the variable? Assume that neither a1 nor b1 is equal to 0:

(a1x + b1)(a2x + b2) = 0
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Answer 22-4

This equation is a product of binomials. The roots are the values of x that make either factor 
equal to 0. We can find those roots by setting each binomial equal to 0, creating two separate 
first-degree equations. Then we can morph the equations to get the variable all alone on the 
left side of the equals sign, and some combination of the coefficient and constant on the right 
side. For the first term, the process goes like this:

a1x + b1 = 0
 a1x = −b1

 x = −b1/a1

For the second term, it’s the same, but with subscripts of 2 instead of 1:

a2x + b2 = 0
 a2x = −b2

 x = −b2/a2

Question 22-5

How can we solve the following quadratic equation, where a and b are real numbers, and x is 
the variable? Assume that a ≠ 0:

(ax + b)2 = 0

Answer 22-5

We can look at this equation as a product of two identical binomials:

(ax + b)(ax + b) = 0

We can solve this quadratic in the same way as we solved the equation in Answer 22-4. But 
this time, we get only one root:

ax + b = 0
 ax = −b
 x = −b /a

Question 22-6

What’s special about the root of the equation we solved in Answer 22-5?

Answer 22-6

This root, −b/a, occurs “twice over.” In technical terms, the root has multiplicity 2.

Question 22-7

Suppose we see a quadratic equation in polynomial standard form. Again, here’s the general form:

ax 2 + bx + c = 0
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where a and b are coefficients of the variable x, a ≠ 0, and c is a constant. What is the general 
formula for solving this quadratic?

Answer 22-7

The formula, known as the quadratic formula, is

x = [−b ± (b2 − 4ac)1/2] / (2a)

This is worth memorizing!

Question 22-8

What is the discriminant in the quadratic formula? Why is it significant?

Answer 22-8

The discriminant, sometimes symbolized as d, is the quantity (b2 − 4ac). It tells us whether or 
not a quadratic equation with real-number coefficients and a real-number constant has any 
real roots. If d > 0, then the equation has two different real roots. If d = 0, then the equation 
has one real root with multiplicity 2. If d < 0, then the equation has no real roots.

Question 22-9

How can we use the quadratic formula to find the roots of the following equation?

9x 2 − 42x = −49

Answer 22-9

Before applying the formula, we must get the equation into polynomial standard form. We 
can do that by adding 49 to each side, obtaining

9x 2 − 42x + 49 = 0

In the general polynomial standard equation

ax 2 + bx + c = 0

we have a = 9, b = −42, and c = 49. Plugging these into the quadratic formula, we get

x = [−b ± (b2 − 4ac)1/2] / (2a)
 = [42 ± (422 − 4 × 9 × 49)1/2] / (2 × 9)
 = [42 ± (1,764 − 1,764)1/2] / 18
 = 42/18
 = 7/3

This equation has the single root x = 7/3 with multiplicity 2.
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Question 22-10

How can we use the quadratic formula to find the roots of the following equation?

−x = 3x 2 − 4

Answer 22-10

First, let’s get the equation into polynomial standard form. We can do that by adding x to both 
sides and then switching the right and left sides. That gives us

3x 2 + x − 4 = 0

In the general polynomial standard equation

ax 2 + bx + c = 0

we have a = 3, b = 1, and c = −4. Plugging these into the quadratic formula, we get

x = [−b ± (b2 − 4ac)1/2] / (2a)
 = {−1 ± [12 − 4 × 3 × (−4)]1/2} / (2 × 3)
 = [−1 ± (1 + 48)1/2] / 6
 = (−1 ± 491/2) / 6
 = (−1 ± 7) / 6
 = 6/6 or −8/6
 = 1 or −4/3

The roots of the quadratic equation are x = 1 or x = −4/3.

Chapter 23

Question 23-1

Does a quadratic equation with real coefficients and a real constant, but with a negative dis-
criminant, have any roots at all? If so, what are they like?

Answer 23-1

When a quadratic equation with real coefficients and a real constant has a negative discrimi-
nant, the equation has two roots, both of which are non-real complex numbers.

Question 23-2

How can we use the quadratic formula to find the roots of the following equation?

−x = 3x 2 + 4
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Answer 23-2

First, we must get the equation into polynomial standard form. We can do that by adding x
to both sides and then switching the right and left sides, getting

3x 2 + x + 4 = 0

In the general polynomial standard equation

ax 2 + bx + c = 0

we have a = 3, b = 1, and c = 4. Plugging these into the quadratic formula, we get

x = [−b ± (b2 − 4ac)1/2] / (2a)
 = [−1 ± (12 − 4 × 3 × 4)1/2] / (2 × 3)
 = [−1 ± (1 − 48)1/2] / 6
 = [−1 ± (−47)1/2] / 6

The quantity (−47)1/2 is the imaginary number j(471/2). Therefore

x = [−1 ± j(471/2)] / 6

If we want to express these roots individually, we can write

x = [−1 + j(471/2)] / 6 or x = [−1 − j(471/2)] / 6

We can reduce these to standard complex-number form using the right-hand distributive law
for division over addition or subtraction, getting

x = −1/6 + j(471/2/6) or x = −1/6 − j(471/2/6)

Question 23-3

Suppose we examine the discriminant of a quadratic equation, and we discover that the equa-
tion has two complex roots. How can we tell whether or not these are pure imaginary num-
bers?

Answer 23-3

If the discriminant is a negative real and the coefficient of x is 0, then the roots are pure imagi-
nary. If the discriminant is a negative real and the coefficient of x is a nonzero real, then the 
roots are complex but not pure imaginary.

Question 23-4

In a quadratic equation with real coefficients but pure imaginary roots, how are those roots 
related? In a quadratic equation with real coefficients but complex roots that aren’t pure imagi-
nary, how are those roots related?
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Answer 23-4

If the roots are pure imaginary, then they are additive inverses. That is, one is the negative of 
the other. If the roots are complex but not pure imaginary, then they are conjugates.

Question 23-5

Consider the following quadratic equation in polynomial standard form:

4x 2 + 64 = 0

How can this equation be rewritten in binomial factor form?

Answer 23-5

If we subtract 64 from both sides of the equation and then divide through by 4, we get

x 2 = −16

This tells us that the roots are x = j4 or x = −j4. We can write the negatives of these roots as 
constants in a pair of binomials and then set their product equal to 0, obtaining

(x − j4)(x + j4) = 0

That’s the binomial factor form of the original equation.

Question 23-6

Consider the general quadratic equation

px 2 + q = 0

where p and q are both positive real numbers. What are the roots of this equation?

Answer 23-6

Subtracting q from each side, we get

px 2 = −q

Dividing through by p, which we know is not 0 because we’ve been told that it’s positive, we 
obtain

x 2 = −q /p

which can be rewritten as

x 2 = −1(q /p)
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Because p and q are both positive, we know that the ratio q /p is positive. Its positive and nega-
tive square roots are therefore both real numbers. We can take the square root of both sides of 
the above equation, getting

x = ±[−1(q /p)]1/2

 = ±(−1)1/2 [±(q /p)1/2]

 = ±j[(q /p)1/2]

The roots are therefore x = j[(q /p)1/2] or x = −j[(q /p)1/2].

Question 23-7

Is it possible for the roots of a quadratic equation to be pure imaginary but not additive 
inverses? If so, provide an example of such an equation. If not, explain why not.

Answer 23-7

A quadratic equation can have roots that are pure imaginary but not additive inverses. Here is 
an example of such an equation in binomial factor form:

(x + j2)(x + j3) = 0

The roots of this equation are x = −j2 or x = −j3, as we can verify by plugging them in. They 
are not additive inverses.

Question 23-8

We have learned in the last several chapters (but not explicitly stated in full, until now!), that if 
the polynomial standard form of a quadratic equation has real coefficients and a real constant, 
then one of these things must be true:

• There are two different real roots
• There is a single real root with multiplicity 2
• There are two different pure imaginary roots, and they are additive inverses
• There are two different complex roots, and they are conjugates

In Answer 23-7, we found a quadratic equation that has two pure imaginary roots that are not 
additive inverses. How is this possible?

Answer 23-8

The coefficients and constant in the polynomial standard form of this equation are not all real 
numbers. To see that, we can multiply the product of binomials out:

 (x + j2)(x + j3) = x 2 + j3x + j2x + (j2j3)

 = x 2 + j5x − 6
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In this case, the coefficient of x is imaginary. The coefficient of x 2, as well as the stand-alone 
constant, are real. The complete polynomial quadratic equation is

x 2 + j5x − 6 = 0

Question 23-9

Is it possible for one root of a quadratic equation to be pure real and the other pure imaginary? If so, 
provide an example of such an equation in polynomial standard form. If not, explain why not.

Answer 23-9

Yes, this is possible. Here is an example of such an equation in binomial factor form:

(x + 2)(x + j3) = 0

The roots of this equation are x = −2 or x = −j3, as we can verify by plugging them in. To 
convert this to polynomial standard form, we multiply the product of binomials out:

 (x + 2)(x + j3) = x 2 + j3x + 2x + j6
 = x 2 + (2 + j3)x + j6

Here, the coefficient of x is complex but not pure imaginary, and the stand-alone constant is 
pure imaginary. The coefficient of x 2 is real. The complete polynomial quadratic equation is

x 2 + (2 + j3)x + j6 = 0

Question 23-10

Is it possible for a quadratic equation to have two nonconjugate complex roots, neither or 
which is pure imaginary? If so, provide an example of such an equation in polynomial stan-
dard form. If this sort of situation is impossible, explain why.

Answer 23-10

This, too, is possible! Suppose the roots are 1 + j and 2 + j. These are non-conjugate complex 
numbers, and neither of them is pure imaginary. We can construct a binomial factor quadratic 
with these numbers as roots by subtracting the roots from x, like this:

[x − (1 + j )][x − (2 + j )] = 0

When we multiply the left side of this equation out to obtain a polynomial, taking extra pre-
cautions to be sure that we don’t mess up with the signs, we obtain

 [x − (1 + j)][x − (2 + j)] = [x + (−1) + (−j)][x + (−2) + (−j)]
 = x 2 + (−2x) + (−jx) + (−x) + 2 + j + (−jx) + j2 + (−1)
 = x 2 + (−3x) + (−j2x) + j3 + 1
 = x 2 + (−3 − j2)x + (1 + j3)
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Here, the coefficient of x 2 is real, the coefficient of x is complex, and the stand-alone constant 
is complex. The complete polynomial quadratic is

x 2 + (−3 − j2)x + (1 + j3) = 0

Chapter 24

Question 24-1

Consider the general form of a quadratic function where x is the independent variable, y is the 
dependent variable, and a, b, and c are real numbers with a ≠ 0:

y = ax 2 + bx + c

The graph of this function in Cartesian coordinates is always a parabola that opens either 
straight upward or straight downward. How can we tell which way the parabola opens by 
simply looking at a specific function of this type?

Answer 24-1

The parabola opens straight upward if and only if a > 0. The parabola opens straight down-
ward if and only if a < 0.

Question 24-2

Suppose we see a quadratic function written as shown in Question 24-1, with specific num-
bers in place of a, b, and c. We plot several points (x, y) on the Cartesian plane by plugging in 
various values of x and calculating the results for y. How can we determine how many real zeros 
the function has, assuming we plot enough points to get a “clear picture” of the parabola?

Answer 24-2

The quadratic function has two different real zeros if and only if the parabola crosses the x axis 
twice. The function has one real zero with multiplicity 2 if and only if the parabola is tangent to 
(“brushes up against”) the x axis at the absolute maximum point or the absolute minimum point. 
The function has no real zeros if and only if the parabola doesn’t intersect the x axis at all.

Question 24-3

Parabolas that open upward always have an absolute minimum. Parabolas that open down-
ward always have an absolute maximum. Imagine a quadratic function in which x is the 
independent variable and y is the dependent variable. Its graph is a parabola. If the function 
has two real zeros where x = p and x = q, what is the x-value of the absolute maximum or 
minimum (that is, the vertex point) of the parabola? Let’s call it xv in this example.

Answer 24-3

The value xv is the average of the two zeros. That’s also known as the arithmetic mean, and is 
equal to the sum of the values divided by 2:

xv = (p + q) / 2
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Question 24-4

Imagine another quadratic function in which x is the independent variable and y is the depen-
dent variable. If this function has a single real zero with multiplicity 2 where x = p, what is xv,
the x-value of the vertex point on its graph?

Answer 24-4

When a quadratic function has only one real zero, the parabola is tangent to the x axis at the 
vertex point. That’s also the x-value of the real zero. Therefore, xv = p.

Question 24-5

Suppose we come across the following quadratic function in binomial factor form, where x is 
the independent variable and y is the dependent variable:

y = (x + 2)(x − 4)

Does the parabola representing this function in Cartesian coordinates open upward or down-
ward?

Answer 24-5

To determine this, we must get the right side of the equation in polynomial standard form by 
multiplying the binomials. When we do that, we get

y = x 2 −2x − 8

Because the coefficient of x 2 is positive, the parabola opens upward.

Question 24-6

What are the real zeros of the function stated in Question 24-5? What are the coordinates (xv, yv)
of the vertex point in its graph? Is the vertex an absolute maximum or an absolute minimum?

Answer 24-6

The zeros can be seen by looking at the original form of the function. The right side of that equa-
tion is a product of binomials. If we set it equal to 0, getting a quadratic equation in x, we have

(x + 2)(x − 4) = 0

The zeros of the function are the same as the roots of this quadratic. Without doing any alge-
bra or arithmetic, we can see that these roots are x = −2 or x = 4.

To find the vertex point, let’s remember the general polynomial standard form for a qua-
dratic function:

y = ax 2 + bx + c

The x-coordinate of the vertex point, xv, can be found by the formula

xv = −b /2a
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In this quadratic, a = 1 and b = −2. Therefore

xv = −(−2) / (2 × 1)
 = 2/2
 = 1

Plugging this in and working out the arithmetic using the product of binomials, we get

yv = (xv + 2)(xv − 4)
 = (1 + 2)(1 − 4)
 = 3 × (−3)
 = −9

Therefore, (xv, yv) = (1, −9). This vertex is an absolute minimum because, as we found in 
Answer 24-5, the parabola opens upward.

Question 24-7

Based on the information in Answers 24-5 and 24-6, how can we sketch an approximate 
graph of the quadratic function stated in Question 24-5?

Answer 24-7

We have found that the zeros of the function are x = −2 and x = 4. The points representing 
them are at (−2, 0) and (4, 0). The vertex point is at (1, −9), and the graph is a parabola that 
opens upward. Knowing all this, we can sketch the graph as shown in Fig. 30-1.

Question 24-8

Suppose we come across the following quadratic function in binomial factor form, where x is 
the independent variable and y is the dependent variable:

y = −3x 2 + 7x − 11

Does the parabola representing this function in Cartesian or rectangular coordinates open
upward or downward? How many real zeros does the function have?

Answer 24-8

The parabola opens downward because the coefficient of x 2 is negative. To determine how 
many real zeros the function has, we can evaluate the discriminant d. Once again, recall the 
general polynomial standard form for a quadratic function:

y = ax 2 + bx + c

Here, we have a = −3, b = 7, and c = −11. Therefore

d = b2 − 4ac
 = 72 − 4 × (−3) × (−11)
 = 49 − 132
 = −83
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The fact that d < 0 tells us that the function has no real zeros, just as it tells us that the qua-
dratic equation

−3x 2 + 7x − 11 = 0

has no real roots.

Question 24-9

What are the coordinates (xv, yv) of the vertex point in the graph of the function stated in 
Question 24-8? Is the vertex an absolute maximum or an absolute minimum?

Answer 24-9

The x-coordinate of the vertex point, xv, can be found by the formula

xv = −b /2a

2 6–4–6
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y

4

–8

–10

(–2,0) (4,0)

(1,–9)

Figure 30-1  Illustration for Answer 24-7. This is the 
graph of y = x2 −2x − 8.
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In this function, a = −3 and b = 7. Therefore

xv = −7 / [2 × (−3)]
 = −7/(−6)
 = 7/6

Plugging this in and working out the arithmetic using the function, we get

yv = −3xv
2 + 7xv − 11

 = −3 × (7/6)2 + 7 × (7/6) − 11
 = −49/12 + 49/6 − 11
 = −49/12 + 98/12 − 132/12
 = (−49 + 98 − 132) / 12
 = −83/12

Therefore, (xv, yv) = (7/6,−83/12). This vertex is an absolute maximum, because the parabola 
opens downward.

Question 24-10

Locate two points on the graph of the function stated in Question 24-8, other than the vertex. 
How can we sketch an approximate graph of the function?

Answer 24-10

We can locate two points by plugging in a value of x somewhat smaller than xv, and another 
value of x somewhat larger than xv. Let’s try x1 = 0 and x2 = 2. In the first case, we have

y1 = −3x1
2 + 7x1 − 11

 = −3 × 02 + 7 × 0 − 11
 = 0 + 0 − 11
 = −11

The first non-vertex point is (x1, y1) = (0, −11). In the second case,

y2 = −3x2
2 + 7x2 − 11

 = −3 × 22 + 7 × 2 − 11
 = −12 + 14 − 11
 = 2 − 11
 = −9

The second non-vertex point is (x2, y2) = (2, −9). Now we know these things:

 • The vertex point is (7/6, −83/12)
 • The parabola contains two other points (0, −11) and (2, −9)
 • The parabola opens downward
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Armed with this information, we can sketch the graph. To fit it into a neat space, let’s 
use rectangular coordinates where each horizontal division is 1/4 unit and each vertical 
division is 2 units, with the origin all the way up at the top. We can use a calculator as 
a “point-plotting aid” and approximate the vertex (7/6, −83/12) as (1.17, −6.92). The 
result is shown in Fig. 30-2.

Chapter 25

Question 25-1

What is the polynomial standard form of a cubic equation in the variable x?

Answer 25-1

When a cubic equation is in polynomial standard form and the variable is x, the equation can 
be written like this:

ax 3 + bx 2 + cx + d = 0

where a, b, c, and d are real numbers, and a ≠ 0.

Question 25-2

What is the binomial-cubed form of a cubic equation in the variable x?

x

y

1 2

–4

–8

(0,–11)

–16 (7/6,–83/12)

(2,–9)

Figure 30-2  Illustration for Answer 24-10. This is the 
graph of y = −3x2 + 7x − 11. On the x axis, 
each increment is 1/4 unit. On the y axis, 
each increment is 2 units.
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Answer 25-2

An equation in binomial-cubed form can always be written like this when x is the variable:

(ax + b)3 = 0

where a is a nonzero real number, and b is a real number. 

Question 25-3

What does the binomial-cubed equation from Answer 25-2 look like when multiplied out 
into polynomial standard form?

Answer 25-3

Let’s begin by separating the left side of the equation into a product of three identical binomials:

(ax + b)(ax + b)(ax + b) = 0

When we multiply the second two binomials together and then simplify the result into a 
trinomial, we get the equation

(ax + b)(a2x 2 + 2abx + b2) = 0

Multiplying the binomial by the trinomial and simplifying gives us

a3x3 + 3a2bx 2 + 3ab2x + b3 = 0

Question 25-4

How many real roots does the equation stated in Answer 25-2 have? What is that root, or what 
are they? What is the real solution set X?

Answer 25-4

There is one real root with multiplicity 3. It is the solution to the equation we obtain when 
we set the binomial equal to 0:

ax + b = 0

When we subtract b from both sides and then divide through by a (which is okay because we 
know that a ≠ 0), we get

x = −b /a

The real solution set is therefore

X = {−b /a}
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Question 25-5

What is the binomial-factor form of a cubic equation in the variable x?

Answer 25-5

An equation in binomial-factor form can always be written like this when x is the variable:

(a1x + b1)(a2x + b2)(a3x + b3) = 0

where a1, a2, and a3 are nonzero real numbers, and b1, b2, and b3 are real numbers.

Question 25-6

What does the binomial-factor equation from Answer 25-5 look like when multiplied out 
into polynomial standard form?

Answer 25-6

Let’s start by multiplying the second and third binomials together. When we do that, we 
obtain

(a1x + b1)(a2a3x 2 + a2b3x + b2a3x + b2b3) = 0

Now let’s multiply the binomial by the polynomial on the left side. That gives us

a1a2a3x3 + a1a2b3x 2 + a1b2a3x 2 + a1b2b3x + b1a2a3x 2 + b1a2b3x + b1b2a3x + b1b2b3 = 0

When we group the terms for x 2 and x together and apply the distributive law for multiplica-
tion over addition, we get the polynomial standard form

a1a2a3x 3 + (a1a2b3 + a1b2a3 + b1a2a3)x 2 + (a1b2b3 + b1a2b3 + b1b2a3)x + b1b2b3 = 0

Question 25-7

How many real roots does the equation stated in Answer 25-5 have? What is that root, or what 
are they? What is the real solution set X ?

Answer 25-7

There are three real roots. They are the solutions to the equations we obtain when we set the 
binomials equal to 0:

a1x + b1 = 0
a2x + b2 = 0
a3x + b3 = 0
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When we subtract the “b-constant” from both sides in each of these equations and then divide 
through by the “a-coefficient” (which is okay because we know that a1, a2, and a3 are all non-
zero), we get these roots:

x = −b1/a1 or x = −b2/a2 or x = −b3/a3

The real solution set is therefore

X = {−b1/a1, −b2/a2, −b3/a3}

Question 25-8

It is possible for two, or even all three, of the roots in Answer 25-7 to be the same? If so, give 
examples. If not, explain why not.

Answer 25-8

Yes, this can happen. If two of the roots are identical, then the cubic equation has a total of 
two real roots, one of them of multiplicity 2. Here’s an example:

(x − 3)(x + 2)(−2x − 4) = 0

In this equation, the root for each binomial is the value of x that makes the binomial equal to 0. 
In order from left to right, those values are

x = 3 or x −2 or x = −2

If all three of the roots are identical, then the cubic equation has one real root with multiplic-
ity 3. Consider this:

(x − 5)(2x − 10)(−3x − 15) = 0

Here, as before, the root for each binomial is the x-value that makes it 0. The roots for each 
binomial, in order from left to right, are

x = 5 or x = 5 or x = 5

Question 25-9

What is the binomial factor rule?

Answer 25-9

Imagine that we come across a cubic equation and we put it into the polynomial standard 
form, like this:

ax3 + bx 2 + cx + d = 0

where a, b, c, and d are real numbers, and a ≠ 0. The binomial factor rule tells us that a real 
number k is a root of this equation if and only if (x − k) is a factor of the polynomial.
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Question 25-10

What is the smallest number of real roots that a single-variable cubic equation with real-number 
coefficients and a real-number constant can have? What is the largest number of real roots that 
such an equation can have?

Answer 25-10

A cubic equation in one variable, with real coefficients and a real constant, can have one real 
root, two real roots, or three real roots. There must always be at least one, but there can never 
be more than three.

Chapter 26

Question 26-1

What is the polynomial standard form of an nth-degree equation in the variable x, where n is 
a natural number larger than 3?

Answer 26-1

The polynomial standard form of such an equation is

anxn + an-1xn−1 + an-2x n−2 + ··· + a1x + b = 0

where a1, a2, a3, ... an, and b are real numbers. In addition, the leading coefficient, an, must 
not be equal to 0.

Question 26-2

In an equation of the form shown in Answer 26-1, what would happen if the coefficient an,
by which xn is multiplied, were equal to 0?

Answer 26-2

If an = 0, we get the equation

0xn + an-1xn−1 + an-2xn−2 + ··· + a1x + b = 0

The term for xn has vanished, leaving us with the polynomial standard form for a single-variable 
equation of degree n − 1:

an-1x n−1 + an-2xn−2 + ··· + a1x + b = 0

Question 26-3

What is the binomial-to-the-nth form of an nth-degree equation in the variable x ?
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Answer 26-3

An nth-degree equation in binomial-to-the-nth form can always be written like this when x
is the variable:

(ax + b)n = 0

where a is a nonzero real number, b is a real number, and n is a positive integer. Theoretically, 
n can be any positive integer. If n = 1, the equation is of the first degree; if n = 2, the equation 
is quadratic; if n = 3, the equation is cubic. If n > 3, the equation is of higher degree.

Question 26-4

How many real roots does the equation stated in Answer 26-3 have? What is that root, or what 
are they? What is the real solution set X ?

Answer 26-4

There is one real root with multiplicity n. It is the solution to the equation we obtain when 
we set the binomial equal to 0:

ax + b = 0

When we subtract b from both sides and then divide through by a (which is okay because we 
know that a ≠ 0), we get

x = −b /a

The real solution set is therefore

X = {−b /a}

Question 26-5

Find all the real roots of the following equation, state the multiplicity of each, and state the 
real solution set X.

(x 2 − 6x + 9)2 = 0

Answer 26-5

Let’s set the quantity (x 2 − 6x + 9) equal to 0, so it becomes the quadratic equation

x 2 − 6x + 9 = 0

We can factor this into

(x − 3)2 = 0
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If we substitute the quantity (x − 3)2 for the trinomial in the original equation, we get

[(x − 3)2]2 = 0

which can be simplified to

(x − 3)4 = 0

We can solve by setting the binomial equal to 0:

x − 3 = 0

This first-degree equation resolves to x = 3. This is the only real root of the original higher-
degree equation, and it has multiplicity 4. The real solution set is X = {3}.

Question 26-6

What is the binomial factor form of an nth-degree equation in the variable x?

Answer 26-6

Suppose that a1, a2, a3, ..., an are nonzero real numbers, and b1, b2, b3, ..., bn are real stand-alone 
constants. Let x be the variable in the following equation:

(a1x + b1)(a2x + b2)(a3x + b3) ··· (anx + bn) = 0

This is the binomial factor form for an nth-degree equation in the variable x.

Question 26-7

How many real roots does the equation stated in Answer 25-5 have? What is that root, or what 
are they? What is the real solution set X ?

Answer 26-7

There are n real roots. They are the solutions to the equations we obtain when we set the 
binomials equal to 0:

a1x + b1 = 0
a2x + b2 = 0
a3x + b3 = 0

↓
anx + bn = 0

When we subtract the “b-constant” from both sides in each of these equations and then divide 
through by the “a-coefficient” (which is okay because we know that a1, a2, a3, ..., an are all 
nonzero), we get these roots:

x = −b1/a1 or x = −b2/a2 or x = −b3/a3

... or x = −bn/an
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The real solution set is therefore

X = {−b1/a1, −b2/a2, −b3/a3, ··· −bn/an}

Question 26-8

What are the real roots of the following equation? What is the multiplicity of each root? What 
is the real solution set X? What is the degree of the equation?

(x + 4)(2x − 8)2(3x)5 = 0

Answer 26-8

We take each binomial individually, set it equal to 0, and then solve the resulting first-degree 
equations:

x + 4 = 0
2x − 8 = 0

3x = 0

These equations resolve to x = −4, x = 4, and x = 0 respectively. Therefore, the real roots of 
the original equation are

x = −4 or x = 4 or x = 0

and the real solution set is X = {−4, 4, 0}. The root −4 has multiplicity 1. The root 4 has multi-
plicity 2. The root 0 has multiplicity 5. The degree of the equation is the sum of the exponents 
attached to the factors, in this case 1 + 2 + 5, or 8.

Question 26-9

What is the largest number of real roots that a single-variable equation of the nth degree can 
have? What is the largest number of real or complex roots that such an equation can have?

Answer 26-9

A single-variable equation of the nth degree can have, at most, n roots in total, considering the 
real-number roots and the complex-number roots combined.

Question 26-10

There’s a way to find all the rational-number roots of an nth-degree equation in the single vari-
able x when it appears in the polynomial standard form

anxn + an−1xn−1 + an−2xn−2 + ··· + a1x + b = 0

where a1, a2, a3, ... an, and b are nonzero rationals, and n is a positive integer greater than 3. 
What is that process?
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Answer 26-10

We must do the following things, in the order shown below. The process can be tedious, but 
it’s often more likely to produce useful results than tackling the equation “head-on” or hoping 
for an intuitive breakthrough.

• Make sure that a1, a2, a3, ... an, and b are all integers. If they aren’t, multiply the equa-
tion through by the smallest constant that will turn them all into integers.

• Find all the positive and negative integer factors of b. Call those factors m.
• Find all the positive and negative integer factors of an. Call those factors n.
• Write down all the possible ratios m /n. Call those ratios r.
• With synthetic division, check every r, one at a time, to see if we get a remainder 

of 0.
• If none of the numbers r produces a remainder of 0, then the original equation has no 

rational roots.
• If one or more of the ratios r produces a remainder of 0, then every one of those num-

bers is a rational root of the equation.
• List all of the rational roots. Call them r1, r2, r3, and so on.
• Create binomials of the form (x − r1), (x − r2), (x − r3), and so on. Each of these bino-

mials is a factor of the original equation.
• If we’re lucky, this process will give us an equation in binomial to the nth form, or an 

equation in binomial factor form.
• If we’re less lucky, we’ll get one or more binomial factors and a quadratic factor. That 

factor can be set equal to 0, and then the quadratic formula can be used to find its 
roots. Neither of those roots will be rational. They might even be complex.

• If we’re unlucky, we’ll get one or more binomial factors and a cubic or higher-order 
polynomial factor. If we set the polynomial factor equal to 0, we can be sure that none 
of the roots associated with it are rational.

Chapter 27

Question 27-1

Suppose we’re confronted with a pair of equations in two variables, and one or both of the 
equations is nonlinear. How can we solve these equations as a two-by-two system?

Answer 27-1

When we want to solve a general two-by-two system of equations, we can go through these 
steps in order.

• Decide which variable to call independent, and which one to call dependent.
• Morph both equations so they express the dependent variable in terms of the indepen-

dent variable.
• Mix the independent-variable parts of the equations to get an equation in one 

variable.
• Find the root(s) of that equation.
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• Plug the root(s) into one of the morphed original equations, and calculate the corre-
sponding value(s) of the dependent variable.

• Express the solution(s) as one or more ordered pairs.

Question 27-2

Consider the following pair of quadratic equations as a two-by-two system:

y = x 2

and

y = −x 2

How can we find the real solutions of this system?

Answer 27-2

Let’s call x the independent variable. Then we can mix the right sides of the equations to get

x 2 = −x 2

Adding x 2 to each side, we get

2x 2 = 0

Dividing through by 2 gives us

x 2 = 0

This equation has one real root, x = 0. When we plug this into either of the original equations, 
we get y = 0. Therefore, the single real solution to this system is (0,0).

Question 27-3

Consider the following pair of quadratic equations as a two-by-two system:

y = x 2 − 1

and

y = −x 2 + 1

How can we find the real solutions of this system?

Answer 27-3

Again, let x be the independent variable. When we mix the right sides, we get

x 2 − 1 = −x 2 + 1
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Adding the quantity (x 2 + 1) to each side, we get

2x 2 = 2

Dividing this equation through by 2, we obtain

x 2 = 1

It’s apparent, without doing any algebra, that the roots of this are x = 1 or x = −1. Plugging 
x = 1 into the first original equation, we get y = 0. Plugging x = −1 into that same equation, 
we again get y = 0. This system therefore has two real solutions, (1,0) and (−1,0).

Question 27-4

Consider the following pair of quadratic equations as a two-by-two system:

y = a1x 2 + b1

and

y = a2x 2 + b2

where a1 and a2 are nonzero real numbers that are not equal to each other, and b1 and b2 are 
real numbers. How can we find the real solutions of this system?

Answer 27-4

Once again, let’s call x the independent variable. When we mix the right sides, we get

a1x 2 + b1 = a2x 2 + b2

We can subtract a2x 2 from each side and then apply the distributive law to get

(a1 − a2)x 2 + b1 = b2

Subtracting b1 from each side produces

(a1 − a2)x 2 = b2 − b1

Dividing through by the quantity (a1 − a2), which we know is okay because we’ve been told 
that a1 ≠ a2, we get

x 2 = (b2 − b1) / (a1 − a2)

This means that

x = [(b2 − b1) / (a1 − a2)]1/2

or

x = −[(b2 − b1) / (a1 − a2)]1/2
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When we plug either of these into the first original equation, we have to square it. We’ll 
get the same thing in both cases, so we might as well substitute directly for x 2 into the first 
original equation to obtain

y = a1(b2 − b1) / (a1 − a2) + b1

Multiplying the right-hand side out, we get

y = (a1b2 − a1b1) / (a1 − a2) + b1

Expressing b1 as the ratio b1/1, applying the general rule for adding ratios, and then canceling 
out identical terms that subtract from each other, we obtain

y = (a1b2 − a2b1) / a1a2

Writing these solutions as ordered pairs is tricky and messy. We might as well state the x and y
values separately and take advantage of the plus-or-minus sign. Then we can write

x = ±[(b2 − b1) / (a1 − a2)]1/2 and y = (a1b2 − a2b1) / a1a2

Question 27-5

What happens when we plug the solution for x 2 into the second original equation in the above 
system (instead of the first one, which we already did) and solve for y?

Answer 27-5

When we substitute directly for x 2 into the second original equation, we get

y = a2(b2 − b1) / (a1 − a2) + b2

Multiplying the right-hand side out, we get

y = (a2b2 − a2b1) / (a1 − a2) + b2

Expressing b2 as the ratio b2/1, applying the general rule for adding ratios, and then canceling 
out identical terms that subtract from each other, we obtain the same result as before:

y = (a1b2 − a2b1) / a1a2

Question 27-6

Consider the following pair of quadratic equations as a two-by-two system:

y = (x + 1)2

and

y = (x − 1)2

How can we find the real solutions of this system?
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Answer 27-6

The best approach here is to multiply out the right sides of both of the binomial-squared 
equations, obtaining the quadratics in polynomial standard form. When we do that, we get

y = x 2 + 2x + 1

and

y = x 2 − 2x + 1

Mixing the right sides of these quadratics gives us

x 2 + 2x + 1 = x 2 − 2x + 1

Subtracting the quantity (x 2 + 1) from each side, we obtain

2x = −2x

We can add 2x to each side and then divide through by 4 to get x = 0 as the sole root of this 
“mixed quadratic.” When we substitute this value for x into either of the original equations, 
we get y = 1. Therefore, the system has the single real solution (0,1).

Question 27-7

Consider the following pair of quadratic equations as a two-by-two system:

y = (ax + b)2

and

y = (ax − b)2

Where a and b are real numbers, neither of which are equal to 0. How can we find the real 
solutions of this system?

Answer 27-7

Again, let’s multiply out the right sides of the binomial-squared equations. When we do that, 
we obtain

y = a2x 2 + 2abx + b2

and

y = a 2x 2 − 2abx + b2

Setting the right sides equal gives us the “mixed quadratic”

a 2x 2 + 2abx + b2 = a2x 2 − 2abx + b2
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When we subtract the quantity (a2x 2 + b 2) from each side, we get

2abx = −2abx

We can add 2abx to each side and then divide through by 4ab (which is “legal” because we’ve 
been told that a ≠ 0 and b ≠ 0, so we can be sure that 4ab ≠ 0). When we do that, we obtain 
x = 0 as the only root of the “mixed quadratic.” We can substitute this value for x into the 
original equations, obtaining y = b2 in both cases. Therefore, the system has the single solu-
tion (0,b2).

Question 27-8

Imagine that we’re trying to solve a general two-by-two system of equations, and we mix them 
to get a single equation in one variable. When we solve that “mixed” equation, we get two dif-
ferent roots, one of which has multiplicity 1, and the other of which has multiplicity 2. What 
does this say about the solutions of the original system?

Answer 27-8

The solutions of the original two-by-two system have the same multiplicity pattern as the 
roots of the “mixed” equation. In this case, that means there is one solution with multiplicity 
1, and another solution with multiplicity 2.

Question 27-9

Consider the following pair of equations:

y = (x + 1)3

and

y = x 3 + 2x 2 + x

How can we find the real solutions to this two-by-two system?

Answer 27-9

Let’s multiply out the first equation to get it into polynomial standard form. When we do 
that, the system becomes

y = x 3 + 3x 2 + 3x + 1

and

y = x 3 + 2x 2 + x

We can mix the right sides of these equations, getting

x 3 + 3x 2 + 3x + 1 = x 3 + 2x 2 + x
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Now let’s subtract the entire right side of this equation from the left side. When we do that, 
we obtain

x 2 + 2x + 1 = 0

which factors into

(x + 1)2 = 0

This equation has the single real root x = −1, with multiplicity 2. When we plug that into the 
first original equation, we get

y = (x + 1)3

 = (−1 + 1)3

 = 03

 = 0

Therefore, the original system has the single real solution (−1,0), with multiplicity 2.

Question 27-10

Consider the following pair of equations:

y = (x + 1)3

and

y = (x + 2)3

How can we find the real solutions of this two-by-two system, if any exist?

Answer 27-10

Let’s multiply both of these equations out to get cubics in polynomial standard form. That 
gives us

y = x 3 + 3x 2 + 3x + 1

and

y = x 3 + 6x 2 + 12x + 8

When we mix the right sides of these equations, we get

x 3 + 3x 2 + 3x + 1 = x 3 + 6x 2 + 12x + 8

Subtracting the entire left side from the right side and then switching right-to-left, we obtain

3x 2 + 9x + 7 = 0
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The discriminant of this quadratic is negative, telling us that it has no real roots. The 
x-values of any solutions we can derive for the original system will not be real numbers. There-
fore, no real solutions exist.

Chapter 28

Question 28-1

How do we graph a general two-by-two system of equations when we want to see approxi-
mately where the curves intersect at the real solutions, but we don’t need a lot of precision?

Answer 28-1

First, we can calculate several ordered pairs for both functions individually, including the real 
solutions, if any exist. It can be helpful to put the values in a table. Next, we figure out the 
scales we should have on our graph so as to provide a good “picture” of the situation. Then we 
plot the real solution point or points, if any exist, on the coordinate grid. After that, we plot 
the rest of the points based on the values in the table we’ve created. Finally, we fill in the lines 
or curves for both functions.

Question 28-2

Consider the system of equations we solved in Answer 27-2:

y = x 2

and

y = −x 2

How can we sketch an approximate graph of this system, showing the real solution?

Answer 28-2

We can tabulate and plot several points in both functions including the real solution, (0,0). 
Table 30-1 compares some values of x, some values of the first function, and some values of 

Table 30-1. Selected values for graphing the functions
y = x 2 and y = −x 2.

The bold entry indicates the real solution.

x x 2 −x 2

−2 4 −4
−1 1 −1
 0 0 0
 1 1 −1
 2 4 −4



Part Three  531

the second function. Figure 30-3 shows the curves and the solution point. On both axes, each 
increment represents 1 unit.

Question 28-3

Consider the system of equations we solved in Answer 27-3:

y = x 2 − 1

and

y = −x 2 + 1

How can we sketch an approximate graph of this system, showing the two real solutions?

Answer 28-3

We can tabulate and plot several points in both functions including the real solutions, (1,0) 
and (−1,0). Table 30-2 compares some values of x, some values of the first function, and some 
values of the second function. Figure 30-4 shows the curves and the solution points. On both 
axes, each increment represents 1 unit.

x

y

(0,0)

Figure 30-3  Illustration for Answer 28-2. The first function 
is graphed as a solid curve; the second function 
is graphed as a dashed curve. The real-number 
solution appears as a point where the curves 
intersect. On both axes, each increment is 1 unit.
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Question 28-4

When we compare the systems stated in Questions 28-2 and 28-3 and graphed in Figs. 30-3 
and 30-4, we can see that the curves have the same shapes in both situations. But in the 
second case, the upward-opening parabola has been moved vertically down by 1 unit, while 
the downward-opening parabola has been moved vertically up by 1 unit. This has caused the 
single intersection point (Fig. 30-3) to “break in two” (Fig. 30-4). What will happen if we 
move the upward-opening parabola, shown by the solid curve, further down, and move the 
downward-opening parabola, shown by the dashed curve, further up by the same distance? 
How will the equations in the system change if we do this?

Answer 28-4

If we move the parabolas this way, the intersection points will move farther from each other. 
The negative x-value of one real solution will become more negative, and the positive x-value 

Table 30-2. Selected values for graphing the functions
y = x2 − 1 and y = −x2 + 1.

Bold entries indicate real solutions.

x x 2 − 1 −x 2 + 1

−2 3 −3
−1 0 0
 0 −1 1
1 0 0

 2 3 −3

x

y

(–1,0) (1,0)

Figure 30-4  Illustration for Answer 28-3. The first function 
is graphed as a solid curve; the second function is 
graphed as a dashed curve. Real-number solutions 
appear as points where the curves intersect. On both 
axes, each increment is 1 unit.
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of the other real solution will become more positive to the same extent. The y-values of both 
solutions will remain at 0; the points will stay on the x axis. Figure 30-5 shows an example. 
On both axes, each increment represents 1 unit. The stand-alone constants in the equations 
will change. The negative constant in the first equation will become more negative, and the 
positive constant in the second equation will become more positive to the same extent.

Question 28-5

Let’s modify the system presented in Question 28-4 and graphed in Fig. 30-5. Suppose that 
we move the upward-opening parabola even further straight down, but leave the downward-
opening parabola in the same place. What will happen to the solution points? How will the 
equations in the system change?

Answer 28-5

The intersection points will move even farther from each other. The negative x-value of one 
real solution will become more negative, and the positive x-value of the other real solution will 
become more positive to the same extent. The y-values of both solutions will become nega-
tive to an equal extent. The solution points will move off the x axis into the third and fourth 
quadrants of the coordinate plane. This assumes that we move the upward-opening parabola 
exactly in the negative-y direction. Figure 30-6 shows an example. On both axes, each incre-
ment represents 1 unit. The negative constant in the first equation will become more negative, 
and the positive constant in the second equation will stay the same.

Question 28-6

Consider the system of equations we solved in Answer 27-6:

y = (x + 1)2

x

y

Solution Solution

Figure 30-5  Illustration for Answer 28-4. The first function 
is graphed as a solid curve; the second function is 
graphed as a dashed curve. Real-number solutions 
appear as points where the curves intersect. On both 
axes, each increment is 1 unit.



and

y = (x − 1)2

How can we sketch an approximate graph of this system, showing the real solution?

Answer 28-6

We can tabulate and plot several points in both functions including the real solution, (0,1). 
Table 30-3 compares some values of x, some values of the first function, and some values of 
the second function. Figure 30-7 shows the curves and the solution point. On the x axis, each 
increment is 1/2 unit. On the y axis, each increment is 2 units.

x

y

Solution Solution

Figure 30-6  Illustration for Answer 28-5. The first function 
is graphed as a solid curve; the second function is 
graphed as a dashed curve. Real-number solutions 
appear as points where the curves intersect. On both 
axes, each increment is 1 unit.
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Table 30-3. Selected values for graphing the functions
y = (x + 1)2 and y = (x − 1)2.

The bold entry indicates the real solution.

x (x + 1)2 (x − 1)2

−3 4 16
−2 1 9
−1 0 4
 0 1 1
 1 4 0
 2 9 1
 3 16 4
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Question 28-7

Let’s modify the system of equations stated in Question 28-6. Suppose we multiply the right 
side of the second equation by −1, producing this two-by-two system:

y = (x + 1)2

and

y = −(x − 1)2

How will this affect the graph of the second equation, shown by the dashed curve? How will 
it affect the real solution set?

Answer 28-7

If we multiply the right side of this equation by −1, we multiply all values of the function by 
−1. This inverts the entire graph of the function with respect to the x axis. Figure 30-8 shows 
the result. On the x axis, each increment is 1/2 unit. On the y axis, each increment is 2 units. 
We can see that the system has no real solutions because the curves don’t intersect. The real 
solution set is empty.

Question 28-8

Let’s modify the system of equations stated in Question 28-6 in a different way. Suppose we 
subtract 12 from the right side of the second equation, producing this two-by-two system:

y = (x + 1)2

x

y

(0,1)

Figure 30-7  Illustration for Answer 28-6. The first function 
is graphed as a solid curve; the second function 
is graphed as a dashed curve. The real-number 
solution appears as a point where the curves 
intersect. On the x axis, each increment is 1/2 unit. 
On the y axis, each increment is 2 units.



and

y = (x − 1)2 − 12

How will this affect the graph of the second equation, shown by the dashed curve? How will 
it affect the real solution set?

Answer 28-8

If we subtract 12 from the right side of this equation, we reduce all values of the function 
by 12. This moves the entire graph of the function vertically down by 12 units. Figure 30-9 
shows the result. On the x axis, each increment is 1/2 unit. On the y axis, each increment 
is 2 units. This graph suggests that the resulting system still has one real solution, but it has 
changed. If we want to find the solution, we must solve the new system, starting all over again 
from scratch. (For extra credit, you can do this.)

Question 28-9

Consider the system of equations we solved in Answer 27-9:

y = (x + 1)3

and

y = x3 + 2x 2 + x

How can we sketch an approximate graph of this system, showing the real solution?

x

y

No
real
solutions

No
intersection
points

Figure 30-8  Illustration for Answer 
28-7. The first function is 
graphed as a solid curve; 
the second function is 
graphed as a dashed curve. 
The curves do not intersect, 
indicating that the system 
has no real solutions. On 
the x axis, each increment 
is 1/2 unit. On the y axis, 
each increment is 2 units.
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Answer 28-9

We can tabulate and plot several points in both functions including the real solution, (−1,0).
Table 30-4 compares some values of x, some values of the first function, and some values of 
the second function. Figure 30-10 shows the curves and the solution point. On the x axis, 
each increment is 1/2 unit. On the y axis, each increment is 5 units.

x

y

Solution

Figure 30-9  Illustration for Answer 28-8. The first function 
is graphed as a solid curve; the second function 
is graphed as a dashed curve. The solution point 
has moved. To find its coordinates, we must solve 
the new system algebraically. On the x axis, each 
increment is 1/2 unit. On the y axis, each increment 
is 2 units.

Table 30-4. Selected values for graphing the functions
y = (x + 1)3 and y = x3 + 2x 2 + x.

The bold entry indicates the real solution.

x (x + 1)3 x 3 + 2x 2 + x

−3 −8 −12
−2 −1 −2
−1 0 0
 0 1 0
 1 8 4
 2 27 18
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Question 28-10

Consider the system of equations we evaluated in Answer 27-10, where we found that there 
are no real solutions:

y = x3 + 3x 2 + 3x + 1

and

y = x 3 + 6x 2 + 12x + 8

How can we sketch an approximate graph of this system, showing that there are no real solutions?

Answer 28-10

We can tabulate and plot enough points in both functions to get clear images of their curves, and to 
show that they do not intersect (although they come close). Table 30-5 compares some values of x,
some values of the first function, and some values of the second function. Figure 30-11 shows the 
curves. On the x axis, each increment is 1 unit. On the y axis, each increment is 10 units.

Chapter 29

Question 29-1

If we say that the common logarithm of a certain number p is equal to q, what do we mean?

Answer 29-1

The common logarithm (or common log) of a number is the power to which we must raise 10 
to get that number. If we say that the common log of p is equal to q, we mean

p = 10q

x

y

(–1,0)

Figure 30-10  Illustration for Answer 28-9. The first function 
is graphed as a solid curve; the second function 
is graphed as a dashed curve. The real-number 
solution appears as a point where the curves 
intersect. On the x axis, each increment is 1/2 unit. 
On the y axis, each increment is 5 units.
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The common log is sometimes called the base-10 log, because 10 is the base that we raise to 
various powers.

Question 29-2

According to the definition in Answer 29-1, what is the common log of 10? Of 100? Of 
1,000? Of 10,000? What happens to the common log of a positive number, as that number 
grows larger and larger indefinitely?

Answer 29-2

The common log is related to a growing positive number like this:

• The common log of 10 is 1, because 101 = 10.
• The common log of 100 is 2, because 102 = 100.

Table 30-5. Selected values for graphing the functions
y = x 3 + 3x 2 + 3x + 1 and y = x 3 + 6x 2 + 12x + 8.

This system has no real solutions.

x x3 + 3x2 + 3x + 1 x 3 + 6x 2 + 12x + 8

−5 −64 −27
−4 −27 −8
−3 −8 −1
−2 −1 0
−1 0 1
  0 1 8
  1 8 27
  2 27 64

x

y

No
intersection
points

No
real
solutions

Figure 30-11  Illustration for Answer 28-10. 
The first function is graphed 
as a solid curve; the second 
function is graphed as a dashed 
curve. The curves do not 
intersect (although they come 
close!), so there are no real 
solutions. On the x axis, each 
increment is 1 unit. On the 
y axis, each increment is 10 
units.
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• The common log of 1,000 is 3, because 103 = 1,000.
• The common log of 10,000 is 4, because 104 = 10,000.

As a number gets larger without limit, so does its common log. The size of the logarithm 
grows much more slowly than the size of the number.

Question 29-3

According to the definition in Answer 29-1, What is the common log of 1? Of 1/10? Of 1/100? 
Of 1/1000? What happens to the common log of a positive real number whose absolute value 
keeps shrinking, that is, as the number approaches 0 from the positive direction? What hap-
pens to the common log of a shrinking positive real number when it actually becomes 0?

Answer 29-3

As the absolute value of a positive number keeps shrinking, its common log changes like this:

• The common log of 1 is 0, because 100 = 1.
• The common log of 1/10 is −1, because 10−1 = 1/10.
• The common log of 1/100 is −2, because 10−2 = 1/100.
• The common log of 1/1,000 is −3, because 10−3 = 1/1,000.

As a shrinking positive number approaches 0, its common log becomes more negative. 
As the shrinking positive number “closes in” on 0, the common log decreases—that is, it 
increases negatively—without limit. When the shrinking positive number actually reaches 
0, its common log is no longer defined in the set of real numbers. (Perhaps it’s non-real but 
complex, or maybe it’s some other kind of number entirely. Evaluating it is beyond the scope 
of this book.)

Question 29-4

If we say that the natural logarithm of a certain number p is equal to q, what do we mean?

Answer 29-4

The natural logarithm (or natural log) of a number is the power to which we must raise Euler’s 
constant, e, to get that number. If we say that the natural log of p is equal to q, we mean

p = eq

The common log is sometimes called the base-e log, because e is the base that we raise to vari-
ous powers. The value of e is approximately 2.71828. It’s an irrational number, however, so it 
cannot be fully written out in decimal form.

Question 29-5

According to the definition in Answer 29-4, what is the natural log of e? Of e2? Of e3? Of e4?
What happens to the natural log of a number as that number grows larger without limit?
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Answer 29-5

The natural log is related to a growing number like this:

• The natural log of e is 1, because e1 = e.
• The natural log of e2 is 2.
• The natural log of e 3 3.
• The natural log of e4 is 4.

As a number gets larger without limit, so does its natural log, but the size of the log grows 
much more slowly than the size of the number.

Question 29-6

According to the definition in Answer 29-4, What is the natural log of 1? Of 1/e? Of 1/e2? Of 
1/e 3? What happens to the natural log of a positive real number whose absolute value keeps 
shrinking? What happens to the natural log of a shrinking positive real number when it actu-
ally becomes 0?

Answer 29-6

As the absolute value of a positive number keeps shrinking, its natural log changes like this:

• The natural log of 1 is 0, because e0 = 1.
• The natural log of 1/e is −1.
• The natural log of 1/e2 is −2.
• The natural log of 1/e3 is −3.

As a positive number approaches 0, its natural log becomes more negative. There is no 
limit to how large negatively the log can get. When the shrinking positive number actually 
reaches 0, its natural log is no longer defined in the set of real numbers. (Perhaps it’s non-real 
but complex, or maybe it’s some other kind of number entirely. Evaluating it is beyond the 
scope of this book.)

Question 29-7

How can logarithms be used to change products into sums, or ratios into differences? Do 
these properties of logs depend on the base?

Answer 29-7

The logarithm of the product of two numbers is equal to the sum of their logarithms. The 
logarithm of the ratio of two numbers is equal to the difference between their logarithms. 
These rules work for common logs as well as for natural logs. In fact, they work no matter 
what the base happens to be, as long as we don’t change the base during the calculation!

Question 29-8

What is the common exponential of a number? What is the natural exponential of a number?
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Answer 29-8

The common exponential of a number is what we get when we raise 10 to a power equal to 
that number. The natural exponential of a number is what we get when we raise e to a power 
equal to that number. When working with natural exponentials, it’s customary to call e the 
exponential constant.

Question 29-9

How can we find the number x whose common exponential is 100,000? How can we find the 
number y whose natural exponential is 100,000?

Answer 29-9

To find the number x whose common exponential is 100,000, we must find the power of 10 
that gives us 100,000. We want to solve the equation

10x = 100,000

It’s easy see that x = 5 in this case. But if we want to go through the motions of solving 
the above equation formally, we can take the common log (symbolized log10) of both sides, 
obtaining

log10(10x) = log10 100,000

The common log function “undoes” the common exponential function, so we can simplify 
this equation to

x = log10 100,000

A calculator tells us that log10 100,000 is exactly equal to 5.
Finding the number y whose natural exponential is 100,000 is a little more involved. We 

want to find the power of e that gives us 100,000, so we must solve the equation

e y = 100,000

If we take the natural log (symbolized ln) of both sides of this equation, we get

ln (e y) = ln 100,000

The natural log function “undoes” the natural exponential function, so we have

y = ln 100,000

A calculator tells us that y = 11.513, rounded off to three decimal places.

Question 29-10

How can we find the number x whose natural exponential is 1/e 5? How can we find the num-
ber y whose common exponential is 1/e 5?
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Answer 29-10

To find the number x whose natural exponential is 1/e5, we must find the power of e that gives 
us 1/e5. We want to solve the equation

e x = 1/e5

This is almost trivial, because 1/e 5 is just another way of writing e −5. Now we have

e x = e−5

Obviously, this means x = −5. If, despite the simplicity of this, we insist on solving formally 
and including every step, we can take the natural log of both sides of the above equation, 
obtaining

ln (ex) = ln (e −5)

We can simplify both sides to get

x = −5

Finding the number y whose common exponential is 1/e 5 requires more work, but not much. 
We want to find the power of 10 that gives us e −5, so we must solve the equation

10y = e−5

If we take the common log of both sides of this equation, we obtain

log10 (10y) = log10 (e−5)

The common log function “undoes” the common exponential function, so we have

y = log10 (e −5)

A calculator tells us that e −5 = 0.006737947, rounded off to nine decimal places. That ought 
to be plenty of digits to give us a good idea of the final answer, which is the common log of 
0.006737947. Rounding off the end result to three decimal places, we get

y = log10 (0.006737947)
 = −2.171
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Do not refer to the text when taking this test. A good score is at least 80 percent of the 
answers correct. Answers are in the back of the book. It’s best to have a friend check your 
score the first time, so you won’t memorize the answers if you want to take the test again. 
This test is long. Don’t try to do it all 547in one sitting!

 1.  Which of the following procedures, if any, is not an acceptable way to modify an 
equation?
(a) Add a positive integer to the part of the equation to the left of the equals sign, and 

add the same positive integer to the part of the equation to the right of the equals 
sign.

(b) Subtract a positive integer from the part of the equation to the left of the equals 
sign, and subtract the same positive integer from the part of the equation to the 
right of the equals sign.

(c) Multiply the part of the equation to the left of the equals sign by a positive integer, 
and multiply the part of the equation to the right of the equals sign by the same 
positive integer.

(d) Divide the part of the equation to the left of the equals sign by a positive integer, 
and divide the part of the equation to the right of the equals sign by the same 
positive integer.

(e) All of the above procedures are acceptable.

 2. Consider the following pair of equations as a two-by-two linear system:

x = 4y − 3

and

x = 4y + 2
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What is the solution to this system?
(a) (x, y) = (0, 4).
(b) (x, y) = (3/4, −1/2).
(c) (x, y) = (−4/3, 2).
(d) There are infinitely many solutions.
(e) There is no solution.

 3. If the discriminant in a quadratic equation is equal to 0, it means that
(a) the equation has two different real roots.
(b) the equation has one real root with multiplicity 2.
(c) the equation has one imaginary root with multiplicity 2.
(d) the equation has two different nonreal, complex roots.
(e) the equation has no roots at all.

 4. Which of the following is not a rational number?
(a) 22/7
(b) 25.25252525 ...
(c) π
(d) 641/2

(e) (64/9)1/2

 5.  Suppose that m and n are integers, and p is a nonzero integer. All of the following 
equations except one are generally true. Which one is the exception?
(a) (m + n)/p = m/p + n /p
(b) p/(m − n) = p /m − p /n
(c) p(m + n) = pm + pn
(d) (m + n)p = mp + np
(e) (m − n)p = mp − np

 6.  Suppose we are trying to solve a three-by-three linear system using matrices. We are 
sure we haven’t made any mistakes along the way. We come up with this matrix:

2 2 2 8

3 3 3 −7

−1 −1 −1 5

We can conclude that the original three-by-three system has
(a) no solutions.
(b) one solution.
(c) two solutions.
(d) three solutions.
(e) infinitely many solutions.
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 7.  Fill in the blank to make the following statement true. “Suppose that a is a nonzero number. 
Also suppose that m and n are rational numbers, with n ≠ 0. If we raise a to the mth power 
and then take the nth root of that quantity, we get the same result as if we ________.”
(a) raise a to the power of (m + n)
(b) raise a to the power of (m − n)
(c) raise a to the power of mn
(d) raise a to the power of m /n
(e) raise a to the power of 1/(mn)

 8.  When we want to add two complex numbers, we must
(a) add the real parts and multiply the imaginary parts, getting a real number.
(b) multiply the real parts and add the imaginary parts, getting a complex number.
(c) multiply the real parts and the imaginary parts separately, getting a real number.
(d) add the real parts and the imaginary parts separately, getting a complex number.
(e) find their absolute values and add them, getting a real number.

 9.   In Fig. FE-1, which of the following statements is true, assuming A, B, C, and D are 
all non-empty sets?
(a) Sets A and B are disjoint, and sets C and D are disjoint.
(b) Sets A and C are disjoint, and sets B and D are disjoint.
(c) Sets B and C are disjoint, and sets A and D are disjoint.
(d) Sets A and C are disjoint, and sets A and D are disjoint.
(e) None of the above.

 10.  In Fig. FE-1, which of the following statements is true, assuming A, B, C, and D are 
all non-empty sets?
(a) B ⊆ A
(b) B ∈ A
(c) A ∩ B = A
(d) A ∩ B = ∅
(e) A ∪ B = B

 11.  Suppose it’s 12:00 noon on the twenty-fifth day of June. How many 24-hour days will 
pass between this moment and 12:00 noon on the fourth day of July, in the same year 
and in the same time zone? (June has 30 days.)
(a) Eight days.
(b) Nine days.
(c) Ten days.
(d) Eleven days.
(e) Twelve days.

 12. The numerical value of 13/(−3) is the same as the value of
(a) −4-1/3.
(b) 4-1/3.
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(c) −3/13.
(d) 3/(−13).
(e) −3/(−13).

 13. What is (−3/7) / (13/2) in lowest terms?
(a) −13/4
(b) −6/91
(c) −39/14
(d) −3/46
(e) −5/26

 14. Consider the following third-degree equation:

(x + 7)3 = 0

Universe

B

A

C

D

Figure FE-1  Illustration for Final Exam Questions 9 and 10.



How many real roots does this equation have?
(a) None.
(b) One.
(c) Two.
(d) Three.
(e) Infinitely many.

 15. Which of the following is a 4th root of 1?
(a) 1
(b) −1
(c) j
(d) −j
(e) All of the above

 16.  When we take the 5th root of a number, it’s the same thing as raising that number to 
the power of 
(a) −5.
(b) 1/5.
(c) −1/5.
(d) 25.
(e) −25.

 17. Suppose x and y are real numbers. The quantity [x /(y + 1)]2 makes sense
(a) for all possible values of x and y.
(b) for all possible values of x and y, as long as y ≠ 0.
(c) for all possible values of x and y, as long as x ≠ 0.
(d) for all possible values of x and y, as long as y ≠ −1.
(e) for all possible values of x and y, as long as y ≠ 1.

 18. The decimal expansion of an irrational number between 0 and 1
(a) terminates after a finite number of digits.
(b) is endless and repeating.
(c) is endless and non-repeating.
(d) can be converted to a ratio of two integers.
(e) None of the above.

 19. Consider the following equation:

(x − j5)7 = 0

This equation has an imaginary root j5 with multiplicity
(a) 1.
(b) j.

Final Exam  549



550  Final Exam

(c) 5.
(d) j5.
(e) 7.

 20. What’s the binary equivalent of the decimal 127?
(a) 1001000
(b) 1111111
(c) 1000001
(d) 10000000
(e) 11100111

 21. In Fig. FE-2, what is being done to the original number 16n?
(a) It is being repeatedly multiplied by 2.
(b) It is being repeatedly multiplied by −2.

–2n

4n

a

“Number

reflector”

Finish at n

Start at 16n

Positive numbers

Negative numbers

Figure FE-2  Illustration for Final Exam 
Questions 21 and 22.



(c) It is being repeatedly divided by 2.
(d) It is being repeatedly divided by −2.
(e) It is being repeatedly squared.

 22. In Fig. FE-2, the value of a is
(a) impossible to determine without more information.
(b) −6n.
(c) −8n.
(d) −10n.
(e) −12n.

 23.  Imagine that we come across a cubic function and a linear function, where all the 
coefficients and constants are real numbers. We want to solve these functions as a two-
by-two system. What is the maximum number of real solutions that such a system can 
have?
(a) One.
(b) Two.
(c) Three.
(d) Infinitely many.
(e) We can’t answer this without more information.

 24. Which of the following statements is false?
(a) All integers are rational.
(b) All real numbers are irrational.
(c) All negative rational numbers are real.
(d) All natural numbers are integers.
(e) All integers are real.

 25. When we take a quantity to the power of −1/5, it’s the same thing as
(a) taking the 5th root of the quantity and then taking the reciprocal of the result.
(b) taking the 5th power of the quantity and then taking the reciprocal of the result.
(c) taking the −5th root of the quantity and then taking the reciprocal of the result.
(d) taking the −5th power of the quantity and then taking the reciprocal of the result.
(e) None of the above.

 26. Consider the following third-degree equation:

(x − 1)(x + 7)2 = 0

How many real roots does this equation have?
(a) None.
(b) One.
(c) Two.
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(d) Three.
(e) Infinitely many.

 27. Which of these integers is the smallest?
(a) −8
(b) −2
(c) 0
(d) 3
(e) 7

 28. Which of these integers has the largest absolute value?
(a) −8
(b) −2
(c) 0
(d) 3
(e) 7

 29.  Imagine a two-by-two linear system in variables x and y. Suppose the graphs of the 
equations are parallel, but not coincident, lines in Cartesian coordinates, where y is the 
dependent variable. Such a system has
(a) solutions corresponding to the y-intercepts of the lines.
(b) solutions corresponding to the x-intercepts of the lines.
(c) solutions corresponding to the x-intercept of one line and the y-intercept of the 

other line.
(d) no solutions.
(e) infinitely many solutions.

 30. Consider the following pair of equations as a two-by-two system:

y = a1x + b1

and

y = a2x 2 + b2x + c

 where a1, a2, b1, b2, and c are real numbers, and neither a1 nor a2 are equal to 0. What 
are the smallest and largest numbers of elements that the solution set of such a system 
can have?
(a) None, and one.
(b) None, and two.
(c) None, and three.
(d) One, and three.
(e) None, and infinitely many.



 31. Suppose we have a positive integer a. We subtract −a from it. The result is
(a) equal to 0.
(b) equal to a.
(c) equal to a + a.
(d) equal to −a − a.
(e) undefined.

 32.  Fill in the blank to make the following statement true. “Suppose that a is a nonzero 
number. Also suppose that m and n are rational numbers. If we raise a to the mth power 
and then raise that quantity to the nth power, we get the same result as if we ________.”
(a) raise a to the power of (m + n)
(b) raise a to the power of (m − n)
(c) raise a to the power of mn
(d) raise a to the power of m /n
(e) raise a to the power of 1/(mn)

 33.  Suppose we see two cubic functions. All of the coefficients and constants are real 
numbers. As we solve these functions as a two-by-two system, we create a single-
variable equation by mixing the independent-variable parts of the functions. When we 
factor that equation, we discover that it can be written in binomial-cubed form. Based 
on that knowledge, what can we say about the multiplicities of the real solutions of 
the original system?
(a) Nothing, because there are no real solutions at all.
(b) There are three different real solutions, each of which has multiplicity 1.
(c) There is one real solution with multiplicity 1, and a second, different real solution 

with multiplicity 2.
(d) There is one real solution with multiplicity 3.
(e) There is one real solution with multiplicity 6.

 34. Which of the following sets is nondenumerable?
(a) The set of all natural numbers.
(b) The set of all negative integers.
(c) The set of all integers.
(d) The set of all rational numbers.
(e) The set of all irrational numbers.

 35. The intersection of the null set with any other set is always equal to
(a) that other set.
(b) the null set.
(c) the set containing 0.
(d) the set containing the null set.
(e) the universal set.
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 36. Consider the following quadratic equation:

2x 2 + 5x + 8 = 0

What is the discriminant in this equation?
(a) 391/2

(b) −391/2

(c) 39
(d) −39
(e) ±j39

 37. The quadratic equation stated in Question 36 has
(a) two distinct real roots.
(b) one real root with multiplicity 2.
(c) one imaginary root with multiplicity 2.
(d) two imaginary roots that are additive inverses of each other.
(e) two complex roots that are conjugates of each other.

 38.  Suppose somebody tells us that there’s a general law about how the terms in a 
subtraction problem can be grouped. According to that person, if m, n, and p are 
integers, then it is always true that

(m − n) − p = m − (n − p)

 What can we say about this? Is the person right? Is this a legitimate law of mathematics? 
If so, what is it called?
(a) This isn’t a legitimate law of mathematics.
(b) Yes. It is called the associative law.
(c) Yes. It is called the distributive law.
(d) Yes. It is called the commutative law.
(e) Yes. It is called the law of additive inverses.

 39.  Figure FE-3 represents all the rational numbers in power-of-10 form. Three points are 
shown on the lines: X, Q, and P. Suppose the numbers corresponding to these points 
are called x, q, and p respectively. Based on the information in the drawing,
(a) |x| is one order of magnitude larger than |q|.
(b) |x| is one order of magnitude smaller than |q|.
(c) |x| is five orders of magnitude larger than |q|.
(d) |x| and |q| have the same order of magnitude.
(e) the order-of-magnitude relationship between |x| and |q| can’t be defined.

 40. Based on the information in Fig. FE-3,
(a) |x| is six orders of magnitude larger than |p|.
(b) |x| is six orders of magnitude smaller than |p|.



(c) |x| is two orders of magnitude larger than |p|.
(d) |x| is two orders of magnitude smaller than |p|.
(e) |x| is six times smaller than |p|.

 41. Consider the following pair of equations as a two-by-two linear system:

2x + 7y = 8
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and

−4x + y = −2

 How can we add multiples of these two equations to make x vanish, leaving us with a 
solvable first-degree equation in y alone, with coefficients that are all integers?
(a) We can’t.
(b) We can multiply the top equation through by 2, and then add it to the bottom equation.
(c) We can multiply the bottom equation through by −1/2, and then add it to the top 

equation.
(d) We can multiply both equations through by 2, and then add them.
(e) We can multiply both equations through by 0, and then add them.

 42.  All of the following equations except one are generally true for any two integers p and 
q. Which one is the exception?
(a) p + q = q + p
(b) p + (−q) = (−q) + p
(c) (−p) + q = q + (−p)
(d) p − q = q − p
(e) (−p) + (−q) = (−q) +(−p)

 43.  Suppose that m and n are integers, and p and q are nonzero integers. Which of the 
following statements is always true?
(a) If m /p = n /q, then mq = np.
(b) If m /p = n/q, then mn = pq.
(c) If m /p = n /q, then mp = nq.
(d) If m /p = n /q, then m /q = n /p.
(e) None of the above.

 44.  Suppose a, b, and c are single digits, all different. What is the fractional equivalent of 
the endless repeating decimal 0.abcaabcaabcaabca ...?
(a) a,bca / 9,999
(b) c,aab / 9,999
(c) a,abc / 9,999
(d) b,caa / 9,999
(e) None of the above

 45.  Fill in the blank to make the following statement true. “Suppose that a is a nonzero 
number. Consider am and an, where m and n are integers. If we multiply these two 
quantities, we get the same result as if we ________.”
(a) divide a by (m + n)
(b) multiply a by (m + n)
(c) raise a to the power of (m + n)



(d) raise a to the power of mn
(e) raise a to the power of 1/(mn)

 46. When we add a + jb to its conjugate, we get
(a) a 2 + b 2

(b) a 2 − b 2

(c) 2a
(d) 2b
(e) 4ab

 47. Consider this general equation, where p, q, r, and s are all positive real numbers:

(px + q)(rx + s) = 0

What is the solution set X for this equation?
(a) X = {q /p, s /r}
(b) X = {−q /p, −s /r}
(c) X = {pq, rs}
(d) X = {−pq, −rs}
(e) We need more information to answer this

 48. We can tell right away that a fraction is in lowest terms if
(a) its numerator is “cleanly” divisible by its denominator.
(b) its denominator is “cleanly” divisible by its numerator.
(c) its numerator is a product of primes.
(d) its denominator is a product of primes.
(e) its numerator and denominator are both prime.

 49.  Imagine that we’re working exclusively in the hexadecimal system. What numeral 
represents a quantity one less than 100?
(a) 9F.
(b) 7F.
(c) AF.
(d) FF.
(e) There is no such numeral as 100 in the hexadecimal system, so this question is 

meaningless!

 50. The commutative law for addition can be applied to finite sums of
(a) natural numbers only.
(b) integers only.
(c) rational numbers only.
(d) irrational numbers only.
(e) real numbers.
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 51.  Imagine that we come across two cubic functions, where all the coefficients and 
constants are real numbers. We want to solve these functions as a two-by-two system. 
What is the minimum number of real solutions that such a system can have?
(a) None.
(b) One.
(c) Two.
(d) Three.
(e) We can’t answer this without more information.

 52.  Figure FE-4 shows four mappings. In each case, the maximal domain and the
co-domain are represented by the solid gray regions. Which of these drawings 
illustrates the concept of a surjection onto the co-domain?
(a) Drawing A.
(b) Drawing B.
(c) Drawing C.
(d) Drawing D.
(e) None of them.

A B

C D

Figure FE-4  Illustration for Final Exam 
Question 52.



 53.  Consider the equation 4x + 2y = −7, where x is the independent variable and y is the 
dependent variable. The slope of the graph of this equation is
(a) 2.
(b) −2.
(c) −7/2.
(d) 2/7.
(e) undefined.

 54. The y-intercept of the graph of the equation stated in Question 53 is
(a) 2.
(b) −2.
(c) −7/2.
(d) 2/7.
(e) undefined.

 55. The x-intercept of the graph of the equation stated in Question 53 is
(a) 1.
(b) −1.
(c) 7/4.
(d) −7/4.
(e) impossible to determine without more information.

 56.  What is the solution to the equation −x + a + 5 = 0, where x is the unknown and a is 
a constant?
(a) x = 5 + a
(b) x = 5 − a
(c) x = a − 5
(d) x = −a − 5
(e) It can’t be determined without more information

 57.  When graphing a two-by-two system to illustrate the real solutions, a rectangular 
coordinate system often works better than a strict Cartesian coordinate system because
(a) the rectangular system shows the true slopes of the lines or curves, but the 

Cartesian system does not.
(b) the rectangular system shows negative as well as positive solutions, but the 

Cartesian system shows only positive solutions.
(c) the rectangular system arranges the four quadrants in a more sensible way than the 

Cartesian system.
(d) the rectangular system can provide exact values for the solutions merely by 

observation, but the Cartesian system can provide only approximate values.
(e) the rectangular system can often provide a better pictorial fit than the Cartesian 

system for the range of values we want to show.
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 58.  In Fig. FE-5, a scheme is shown for graphing the inverse of a relation. For any point 
that’s part of the graph of the original relation, we can find its counterpart in the 
graph of the inverse relation by going to the opposite side of the “point reflector,” 
exactly the same distance away. What is the equation of this “point reflector” line?
(a) y = 1
(b) x + y = 0
(c) x − y = 0
(d) x = 1
(e) None of the above

 59. In Fig. FE-5, one of the points is labeled P. In which quadrant is this point?
(a) The first quadrant.
(b) The second quadrant.
(c) The third quadrant.
(d) The fourth quadrant.
(e) It is not in any quadrant.

 60.  Under what circumstances can we add the same variable to both sides of an equation 
and get another valid equation?
(a) Never.
(b) Only if the variable can never become equal to 0.
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(c) Only if the variable can never become negative.
(d) Only if the variable can never become irrational.
(e) Always.

 61. Completing the square is a method of solving a quadratic equation for real roots by
(a) squaring the left and right sides.
(b) adding a constant to both sides in order to get the square root of a binomial on 

one side and a positive real number on the other side.
(c) adding a constant to both sides in order to get the square of a binomial on one 

side and a positive real number on the other side.
(d) taking the square root of both sides, discovering the imaginary roots if any exist.
(e) converting it into a cubic equation that turns out to be easier to solve than the 

original quadratic.

 62. Which of the following statements is false?
(a) If a real number k is a root of a cubic equation in the variable x, then (x + k) is a 

factor of the cubic polynomial.
(b) If a real number k is a root of a cubic equation in the variable x, then (x − k) is a 

factor of the cubic polynomial.
(c) If k is a real number and (x − k) is a factor of a cubic polynomial in the variable x,

then k is a real root of the cubic equation.
(d) All cubic equations have at least one real root, as long as the coefficients and the 

stand-alone constant are all real numbers.
(e) A cubic equation can have one real root and two other roots that are complex 

conjugates of each other.

 63.  A mapping in which each element in the domain corresponds to one, but only one, 
element in the range is called
(a) a rejection.
(b) a bijection.
(c) an injection.
(d) a surjection.
(e) onto.

 64. Consider the following quadratic equation in binomial factor form:

(x − j3)(x + j3) = 0

What is the solution set X for this equation?
(a) X = {3}
(b) X = {j3}
(c) X = {−3}
(d) X = {−j3}
(e) None of the above
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 65.  When we say that a real number u is the natural logarithm of some other real number 
v, and that e is Euler’s constant (an irrational number equal to about 2.71828), we are 
in effect saying that
(a) v equals e to the uth power.
(b) u equals e to the vth power.
(c) v equals u to the eth power.
(d) u equals v to the eth power.
(e) v to the uth power equals e.

 66. A three-by-three linear system is consistent and not redundant if and only if
(a) it has a single, unique solution.
(b) it has two distinct solutions.
(c) it has three distinct solutions.
(d) it has infinitely many solutions.
(e) it has no solutions.

 67.  Under what circumstances can we divide both sides of an equation by the same 
variable and get another valid equation?
(a) Never.
(b) Only if the variable can never become equal to 0.
(c) Only if the variable can never become negative.
(d) Only if the variable can never become irrational.
(e) Always.

 68.  The relation graphed in Fig. FE-6 is not a function of x if we think of it as a mapping 
from values of x to values of y. We can see this because
(a) the curve is not a straight line.
(b) the domain is not the entire set of real numbers.
(c) the relation is not one-to-one.
(d) there are values of x that map into more than one value of y.
(e) there no values of y that map into more than one value of x.

 69.  How can we restrict the range of the relation graphed in Fig. FE-6 so that it becomes a 
function of x if we think of it as a mapping from values of x to values of y?
(a) We can restrict the range to the set of non-negative reals.
(b) We can restrict the range to the set of negative reals.
(c) We can restrict the range to the set of reals larger than 1.
(d) We can restrict the range to the set of reals smaller than −1.
(e) Any of the above.

 70.  The relation graphed in Fig. FE-6 is a function of y if we think of it as a mapping 
from values of y to values of x. We can see this because
(a) there are values of x that map into more than one value of y.
(b) there no values of y that map into more than one value of x.



(c) the curve is symmetrical.
(d) the domain is the entire set of real numbers.
(e) the relation is a surjection.

 71.  Suppose that the coefficients and constant in a polynomial equation are placed in a 
synthetic division array. We try a negative real-number “test root” and get a nonzero 
remainder. The numbers in the last row alternate between positive and negative. This 
tells us that our “test root” is
(a) larger than all the real roots of the equation.
(b) equal to the largest real root of the equation.
(c) somewhere between the smallest and the largest real roots of the equation.
(d) equal to the smallest real root of the equation.
(e) smaller than all the real roots of the equation.

 72. State the solution set X for the quadratic equation

x 2 + 100 = 0

(a) X = {j10, −j10}
(b) X = {10, −10}
(c) X = {(10 + j10), (10 − j10)}
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(d) X = {j10}
(e) X = ∅

 73. Which of the following equations is true for all positive real numbers u and v ?
(a) ln u + ln v = ln (u + v)
(b) ln u + ln v = ln (uv)
(c) ln u + ln v = ln (uv)
(d) ln u ln v = ln (uv)
(e) None of the above

 74.  Imagine that we come across two different functions, both of which are of degree 
larger than 2, and where all the coefficients and constants are real numbers. We want 
to solve these functions as a two-by-two system. What is the maximum number of real 
solutions that such a system can have?
(a) Three.
(b) Four.
(c) Five.
(d) Infinitely many.
(e) We must have more information before we can answer this.

 75.  When we say that the common logarithm of a real number w is equal to z, we are in 
effect saying that
(a) z equals 10 to the wth power.
(b) w equals 10 to the zth power.
(c) z equals w to the 10th power.
(d) w equals z to the 10th power.
(e) w to the z power equals 10.

 76. The octal numeral 700 represents the same quantity as the base-10 numeral
(a) 448.
(b) 589.
(c) 600.
(d) 816.
(e) 1,023.

 77.  In Fig. FE-7, the straight line is the graph of a function where t is the independent 
variable and x is the dependent variable. What is the slope of this line? (Be careful! 
Note that the horizontal axis represents t, and the vertical axis represents x !)
(a) 1/2
(b) 1
(c) −1/2
(d) −1
(e) None of the above



 78. In the graph of Fig. FE-7, the x-intercept of the line is
(a) 13/4.
(b) 7/2.
(c) 4.
(d) 17/4.
(e) impossible to determine without more information.

 79. In the graph of Fig. FE-7, the t-intercept of the line is
(a) −11/6.
(b) −2.
(c) −13/6.
(d) −7/3.
(e) impossible to determine without more information.

 80. Suppose we see the following cubic equation and we want to find its real roots:

x 3 − 4x 2 + 7x = 0

 We’re tempted to divide this through by x, so we can reduce it to a quadratic that will be 
easier to solve. Is that a good idea?
(a) No, because one of the real roots is x = 0.
(b) No, because a cubic equation can never be divided through directly.
(c) No, because we must always factor cubics into binomials to solve them.
(d) Yes, it will work fine.
(e) Yes, but only because the leading coefficient is equal to 1.
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 81. Within the set of real numbers, the base-(−1) logarithm of 99
(a) is not defined.
(b) is equal to −1 to the 99th power, or −1.
(c) is equal to 99 to the −1st power, or 1/99.
(d) is equal to the 99th root of −1, or −1.
(e) is equal to (ln 99) to the −1st power, or approximately 0.22.

 82. What is the sum of 3/5 and 7/12 in lowest terms?
(a) 71/60
(b) 10/17
(c) 60/71
(d) 17/35
(e) 73/69

 83.  Imagine an integer n. We add n to 2/3 of itself, and then we subtract 3/4 of n from 
that sum. We end up with −11. What is the original integer n?
(a) 11
(b) −13
(c) 29
(d) −12
(e) 0

 84.  For any three-by-three linear system to have a single, unique solution, the graphs of all 
the equations must
(a) not intersect anywhere.
(b) intersect at the origin of Cartesian three-space.
(c) intersect in a single flat plane.
(d) intersect in a single straight line.
(e) intersect at a single point.

 85. Which of the following equations is not a quadratic in one variable?
(a) x 2 = 2x + 3
(b) 1/x = x 2 − 7
(c) x 2 + 4x = 27
(d) x − 21 = −8x 2 − 22
(e) 6 + x = 2x 2

 86.  Which of the following is a first-degree equation in one variable? Here, x is the 
variable, while a, b, c, and d are constants.
(a) 3x 2 + 5x − 5 = 0
(b) ax + bx 1/2 + cx 1/3 = d



(c) 5x − a + b 2 = 8
(d) x 3 + x 2 + x = 1
(e) x − x1/2 − x1/3 = a + b

 87.  When we morph a matrix representing a three-by-three linear system, we can perform 
any of the following operations except one. Which one is the “illegal move”?
(a) Interchange all the elements between two rows, while keeping the elements of 

both rows in the same order from left to right.
(b) Divide all the elements in a row by a nonzero constant, keeping the elements in 

the same order from left to right.
(c) Multiply all the elements in a row by a nonzero constant, keeping the elements in 

the same order from left to right.
(d) Add all the elements in any row to all the elements in another row, and then 

replace the elements in either row by the sum, taking care to keep the elements of 
both rows in the same order from left to right. 

(e) Add a constant to all the elements in a row, keeping the elements in the same 
order from left to right.

 88. A prime number is
(a) a natural number that can be factored into a product of composite numbers.
(b) a composite number that cannot be divided by any other natural number except 1 

without a remainder.
(c) a natural number that is 2 or larger, and that can only be factored into a product 

of itself and 1.
(d) a natural number that is the square of some composite number.
(e) a natural number that is the cube of some composite number.

 89. In a rectangular coordinate plane, both axes are linear. This is another way of saying that
(a) along either axis, the change in value is directly proportional to the distance we 

move along that axis.
(b) both axes have increments of the same size.
(c) the origin is at the point (0, 0).
(d) linear equations always have graphs that fall exactly on one of the axes.
(e) the axes intersect at a right angle.

 90.  Figure FE-8 is the graph of a two-by-two linear system. What is the slope-intercept equation 
of line L, considering x as the independent variable and y as the dependent variable?
(a) y = (−2/3)x − 2
(b) y = (2/3)x + 3/2
(c) y = (3/2)x + 3
(d) y = (−3/2)x − 8/5
(e) More information is necessary to answer this
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 91.  In Fig. FE-8, what is the slope-intercept equation of line M, considering x as the 
independent variable and y as the dependent variable?
(a) y = (−5/4)x − 2
(b) y = (5/4)x + 3/2
(c) y = (4/5)x + 3
(d) y = (−4/5)x − 8/5
(e) More information is necessary to answer this

 92.  In Fig. FE-8, what is the slope-intercept equation of line L, considering y as the 
independent variable and x as the dependent variable?
(a) x = (2/3)y − 2
(b) x = (−2/3)y − 2
(c) x = (3/2)y + 3
(d) x = (−3/2)y − 3
(e) More information is necessary to answer this

 93.  In Fig. FE-8, what is the slope-intercept equation of line M, considering y as the 
independent variable and x as the dependent variable?
(a) x = (4/5)y − 2
(b) x = (4/5)y + 2
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(c) x = (−5/4)y − 2
(d) x = (−5/4)y + 2
(e) More information is necessary to answer this

 94.  Here are several things we can do to “smaller than or equal” statements and still have 
valid statements. Something is wrong with one of these claims. Which claim is wrong, 
and how can it be corrected?

 •  We can reverse the left and right sides only if we change the inequality to “larger than 
or equal.”

 • We can add the same quantity to both sides.
 • We can subtract the same quantity from both sides.
 • We can add one statement to another.
 • We can multiply both sides by the same quantity.

(a) The first statement is wrong. We can never reverse the left and right sides of any 
inequality.

(b) The second statement is wrong. We can only add the same quantity to both sides 
of a “smaller than or equal” statement if that quantity is positive.

(c) The third statement is wrong. We can only subtract the same quantity from both 
sides of a “smaller than or equal” statement if that quantity is negative.

(d) The fourth statement is wrong. We cannot, in general, add one “smaller than or 
equal” statement to another.

(e) The fifth statement is wrong. It works if the quantity is nonnegative; but if we 
multiply both sides by a negative quantity, we must change the relation to “larger 
than or equal.”

 95. In Cartesian three-space, the equation 2x + 4y − 6z = 7 represents
(a) a straight line.
(b) a flat plane.
(c) a parabola.
(d) a circle.
(e) None of the above.

 96.  Consider the following first-degree equation in the variable x, where a, b, c, d, e, and f
are constants:

−3a + x /(bcd ) = 24ef

 This equation has meaning only under certain conditions. Which of these statements 
fully states those conditions?
(a) We cannot let b, c, and d all equal 0 at the same time.
(b) We cannot allow b, c, or d to equal 0 at any time.
(c) We cannot allow a to equal 0 at any time.
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(d) We cannot allow e to equal 0 at any time.
(e) We cannot allow f to equal 0 at any time.

 97.  Assuming the condition in Question 96 has been satisfied, what is the solution of this 
equation in terms of the constants?
(a) x = 3abcd + 24bcdef
(b) x = abcd /3 + bcdef /24
(c) x = 3abcd − 24bcdef
(d) x = abcd /3 − bcdef /24
(e) More information is needed to answer this

 98. When a quantity is raised to the −1 power,
(a) we must be sure the quantity can never equal 0.
(b) we always get the additive inverse of the quantity.
(c) we always get a rational number.
(d) we always get a negative number.
(e) we always get 1, except when the quantity equals 0.

 99.  Refer to Fig. FE-9. Imagine two straight lines in this Cartesian plane, one passing 
through points P and Q, and the other passing through lines R and S. Now think 
about the two-by-two system of linear equations represented by these lines. What can 
we say about this system if we consider both of the equations as functions of x ?
(a) The system has one solution.
(b) The system is inconsistent.
(c) Neither function has an inverse that is also a function.
(d) The system is redundant.
(e) One of the functions has an inverse that is also a function, but the other function 

does not.
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 100.  Look again at Fig. FE-9. This time, imagine two straight lines, one passing through 
points P and S, and the other passing through lines Q and R. Consider the two-by-two
system of linear equations represented by these lines. This system has
(a) one solution.
(b) two solutions.
(c) three solutions.
(d) four solutions.
(e) infinitely many solutions.

 101.  Imagine a three-by-three linear system of equations, each of which is in the following 
form:

ax + by + cz = d

 where a, b, c, and d are constants, and x, y, and z are variables. Now suppose that the 
following matrix represents this system:

2 0 0 6

0 −3 0 12

0 0 5 0

This matrix is in
(a) linear form.
(b) dependent form.
(c) diagonal form.
(d) unit diagonal form.
(e) redundant form.

 102.  The matrix shown in Question 101 contains enough information so that we can infer 
the solution to the linear system it represents. How can that solution be expressed as 
an ordered triple of the form (x, y, z)?
(a) (3, −4, 0)
(b) (6, 12, 0)
(c) (2, −3, 5)
(d) (8, 9, 5)
(e) (12, −36, 0)

 103.  Suppose we are trying to solve a three-by-three linear system using matrices. We are 
sure we haven’t made any mistakes along the way. We come up with this matrix:

7 7 7 28

1 1 1 4

−15 −15 −15 −60
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We can conclude that the original three-by-three system has
(a) no solutions.
(b) one solution.
(c) two solutions.
(d) three solutions.
(e) infinitely many solutions.

 104. Are the expressions 2 + j2 and 2 + j 2 different? If so, how?
(a) These two expressions look different, but they actually represent the same number.
(b) The first expression represents a complex (but not real) number. The second 

expression represents a real number.
(c) The first expression represents a real number. The second expression represents a 

complex (but not real) number.
(d) The first expression represents a pure imaginary number. The second expression 

represents a number that is neither pure real nor pure imaginary.
(e) The first expression represents a complex number that is neither pure real nor pure 

imaginary. The second expression represents a pure imaginary number.

 105.  In Fig. FE-10, what do all the numbers corresponding to points on the circle have in 
common?
(a) They are all pure real numbers.
(b) They are all pure imaginary numbers.
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(c) They all have absolute values equal to 3.
(d) They are all complex conjugates.
(e) They are all equal to the square root of −9.

 106.  Imagine a two-by-two linear system in variables x and y. Suppose the graphs of the 
equations are straight lines that intersect at a point in the second quadrant of a 
Cartesian coordinate system where y is the dependent variable. From this information, 
we know that
(a) the solution values for x and y are both positive.
(b) the solution value for x is positive, and the solution value for y is negative.
(c) the solution value for x is negative, and the solution value for y is positive.
(d) the solution values for x and y are both negative.
(e) the solution value for x is the additive inverse of the solution value for y.

 107. Which of the following statements is false?
(a) j 7 = j 3

(b) j 8 = j 4

(c) j 12 = j 8

(d) j 16 = j 12

(e) j 21 = j 18

 108.  Here is a little mathematical verse:
For every x, y, and z :

If x is smaller than y

and

y is equal to z,

then

x is smaller than z.

How can we write this in mathematical symbols?
(a) (∀ x, y, z) : [(x ≤ y) & (y ≤ z)] ⇒  (x < z)
(b) (∀ x, y, z) : [(x < y) & (y = z)] ⇒  (x < z)
(c) (∀ x, y, z) : [(x ≥ y) & (y ≤ z)] ⇒  (x < z)
(d) (∀ x, y, z) : [(x < y) & (y > z)] ⇒  (x < z)
(e) (∀ x, y, z) : [(x = y) & (y < z)] ⇒  (x < z)

 109. What is meant by the term additive identity element?
(a) It’s a number that we can add to a given number to produce a sum of 0.
(b) It’s a number that we can add to a given number to produce a sum equal to the 

original number.
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(c) It’s a number that we can add to a given number to produce a sum equal to the 
negative of the original number.

(d) It’s a number that we can add to a given number to produce a sum of 1.
(e) It’s a number that we can add to a given number to produce a sum equal to twice 

the original number.

 110. Consider the following pair of equations as a two-by-two linear system:

2r = 6s − 8

and

−7r = −21s + 28

What is the solution to this system?
(a) (r, s) = (−2, 7).
(b) (r, s) = (−8/7, 6/7).
(c) (r, s) = (1/4, −3/4).
(d) There are infinitely many solutions.
(e) There is no solution.

 111. The essential domain of a mapping is always a subset of the
(a) maximal domain.
(b) codomain.
(c) independent variable.
(d) dependent variable.
(e) range.

 112.  Figure FE-11 is graph of a quadratic function where x is the independent variable. 
Based on the information shown, what can we say about the coefficient of x 2 in the 
polynomial standard form of the function?
(a) It is an imaginary number.
(b) It is a complex (but not real) number.
(c) It is a positive real number.
(d) It is a negative real number.
(e) We need more information to answer this.

 113.  Based on the information shown in Fig. FE-11, how many real zeros does the 
quadratic function have?
(a) More than two.
(b) Two.
(c) One.
(d) None.
(e) We need more information to answer this.



 114. What is the union of the sets A = {1, 2, 3} and B = {3, 4, 5}?
(a) The set {3}.
(b) The set {1, 2, 3}.
(c) The set {3, 4, 5}.
(d) The set {1, 2, 3, 4, 5}.
(e) The null set.

 115. What is the intersection of the sets A = {1, 2, 3} and B = {3, 4, 5}?
(a) The set {3}.
(b) The set {1, 2, 3}.
(c) The set {3, 4, 5}.
(d) The set {1, 2, 3, 4, 5}.
(e) The null set.

 116.  The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, and 23. Using this information 
along with a calculator, we can determine that one of the following numbers is prime. 
Which one?
(a) 407
(b) 423
(c) 437
(d) 457
(e) 473

 117. A rational number can always be expressed as
(a) an endless, nonrepeating decimal.
(b) a ratio of 1 to an integer.
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(c) a ratio of an integer to a positive integer.
(d) a ratio of an integer to 1.
(e) a terminating decimal.

 118. If the discriminant in a quadratic equation is a positive real number, it means that
(a) the equation has two different real roots.
(b) the equation has one real root with multiplicity 2.
(c) the equation has one imaginary root with multiplicity 2.
(d) the equation has two different imaginary roots.
(e) the equation has no roots at all, real or imaginary.

 119. Consider the following cubic equation in binomial-trinomial form:

(x − 5)(x 2 + 2x + 1) = 0

One of the real roots of this equation has multiplicity 2. Which one?
(a) The root x = 5.
(b) The root x = −5.
(c) The root x = 0.
(d) The root x = 1.
(e) The root x = −1.

 120.  Consider the following quadratic equation, which is expressed as a product of 
trinomials:

(x + 2 − j5)(x + 2 + j5) = 0

What is the solution set X for this equation?
(a) X = {(−2 − j5), (−2 + j5)}
(b) X = {(2 − j5), (2 + j5)}
(c) X = {2, −5}
(d) X = {j2, −j5}
(e) None of the above

 121.  Suppose that a1, a2, b1, b2, c1, and c2 are real numbers, and neither a1 nor a2 are equal 
to 0. Consider

y = a1x 2 + b1x + c1

and

y = a2x 2 + b2x + c2
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 What is the largest number of elements that the solution set of such a system can have? 
Assume that the two equations are not identical, and are not some constant multiple of 
each other.
(a) One.
(b) Two.
(c) Three.
(d) Four.
(e) Infinitely many.

 122.  Suppose someone gives us a list of the first few elements of an infinite set S, and 
assures us that the numbers keep doubling as we move down the list:

S = {2, 4, 8, 16, 32, 64, ...}

Which of the following is not an element of S ?
(a) 4,096
(b) 8,192
(c) 16,384
(d) 1,048,576
(e) 4,194,305

 123.  Consider an integer expressed as a digit sequence without any other symbols (except 
a minus sign if the integer is negative). We can make the absolute value of this integer 
10,000 times as large by
(a) adding 10,000.
(b) adding four ciphers to the left-hand end of the digit sequence.
(c) adding four ciphers to the right-hand end of the digit sequence.
(d) increasing the left-most digit by 4.
(e) inserting a decimal point four digits in from the right-hand end of the digit 

sequence.

 124.  Figure FE-12 is graph of a quadratic function where x is the independent variable. 
Based on the information shown, what can we say about the coefficient of x 2 in the 
polynomial standard form of the function?
(a) It is an imaginary number.
(b) It is a complex (but not real) number.
(c) It is a positive real number.
(d) It is a negative real number.
(e) We need more information to answer this.

 125.  Based on the information shown in Fig. FE-12, how many real zeros does the 
quadratic function have?
(a) More than two.
(b) Two.



578  Final Exam

(c) One.
(d) None.
(e) We need more information to answer this.

 126.  Imagine four nonzero real numbers w, x, y, and z such that wx = yz. From this, we can 
conclude that
(a) w /y = x /z.
(b) w /z = x /y.
(c) w/x = y/z.
(d) z /x = w /y.
(e) None of the above.

 127.  When using synthetic division in an attempt to factor a binomial out of a polynomial, 
our goal is to find a “test root” that produces
(a) a remainder of 0 at the end of the process.
(b) all 0s in the last line.
(c) all positive reals in the last line.
(d) alternating positive and negative reals in the last line.
(e) all negative reals in the last line.

 128. According to the set-based number-building scheme, the natural number 24 is
(a) {1, 2, 3, ..., 22, 23, 24}.
(b) {1, 2, 3, ..., 21, 22, 23}.
(c) {0, 1, 2, ..., 22, 23, 24}.
(d) {0, 1, 2, ..., 21, 22, 23}.
(e) {24}.

x

y

Graph of
a quadratic
function
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(0,0)

Figure FE-12  Illustration for Final Exam 
Questions 124 and 125.
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 129.  Suppose that the coefficients and constant in a polynomial equation are placed in a 
synthetic division array. We try a positive real-number “test root” and get a nonzero 
remainder. None of the numbers in the last row are negative. This tells us that our 
“test root” is
(a) larger than all the real roots of the equation.
(b) equal to the largest real root of the equation.
(c) somewhere between the smallest and the largest real roots of the equation.
(d) equal to the smallest real root of the equation.
(e) smaller than all the real roots of the equation.

 130. Which of the following fractions is in lowest terms?
(a) 7/91
(b) 57/3
(c) −23/115
(d) −29/17
(e) None of the above

 131.  Figure FE-13 shows the graphs of two quadratic functions in a real-number 
rectangular coordinate plane. The origin (0, 0) is where the x and y axes intersect. 
The curves do not intersect anywhere. Suppose we consider these two functions as a 
system, and we find two solutions. Based on the information shown,
(a) both solutions are ordered pairs of positive real numbers. 
(b) both solutions are ordered pairs of negative real numbers.
(c) one solution is an ordered pair of positive reals, and the other solution is an 

ordered pair of negative reals.

x

y

Figure FE-13  Illustration for Final 
Exam Question 131.
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(d) one solution is an ordered pair of reals, and the other solution is an ordered pair of 
pure imaginary numbers.

(e) both solutions are ordered pairs of complex (but not real) numbers.

 132. If a number decreases by a factor of 100, then its natural logarithm
(a) decreases by a factor of ln 100, or approximately 4.6.
(b) decreases by a factor of exactly 2.
(c) increases by a factor of exactly 2.
(d) increases by a factor of ln 100, or approximately 4.6.
(e) increases by a factor of the square root of 100, or exactly 10.

 133. Which of the following statements concerning natural numbers is false?
(a) A number must be either even or odd, but can’t be both.
(b) An even number plus 1 is always odd.
(c) An even number divided by 2 is always a natural number.
(d) An odd number times 2 is always a natural number.
(e) An odd number divided by 2 is always a natural number.

 134.  Suppose we want to solve a higher-degree polynomial equation, and we’re told that 
all the roots are irrational numbers. What can we do to find, or at least approximate, 
those roots?
(a) We can factor the equation into the nth power of a binomial (where n is the 

degree of the equation), make that binomial into a first-degree equation, and then 
solve that equation.

(b) We can factor the equation into the nth power of a trinomial (where n is the 
degree of the equation), make that trinomial into a quadratic, and then solve that 
equation with the quadratic formula.

(c) We can factor the equation into binomials with integer coefficients and integer 
constants, and then derive the roots from those binomials.

(d) We can use synthetic division to find the upper and lower bounds of the real 
roots, and then find those roots using the rational roots theorem.

(e) We can use a computer program to graph the function produced by the 
polynomial, and then use the computer to approximate the zeros of that 
function.

 135. If a number increases by a factor of 10,000, then its common logarithm
(a) decreases by a factor of ln 10,000, or approximately 9.2.
(b) decreases by a factor of exactly 4.
(c) increases by a factor of exactly 4.
(d) increases by a factor of ln 10,000, or approximately 9.2.
(e) increases by a factor of the square root of 10,000, or exactly 100.

 136.  Figure FE-14 shows the graphs of two quadratic functions in a real-number 
rectangular coordinate plane. The origin (0, 0) is where the x and y axes intersect. The 
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graphs intersect at a single point. Suppose we consider these two functions as a system. 
Based on the information shown,
(a) there is a single solution with multiplicity 2; it is an ordered pair of real numbers. 
(b) there is a single solution with multiplicity 2; it is an ordered pair of pure 

imaginary numbers.
(c) there is a single solution with multiplicity 2; it is an ordered pair of complex (but 

not real) numbers.
(d) there are two solutions; one is an ordered pair of reals, and the other is an ordered 

pair of pure imaginary numbers.
(e) there are two solutions; one is an ordered pair of reals, and the other is an ordered 

pair of complex (but not real) numbers.

 137. Consider the following equation, which represents a function of the variable x :

y = x 2 + 3x + 1

 We can write down ordered pairs such as (0,1) or (1,5) to show specific examples of this 
function. In any such ordered pair, the second number represents a value of the
(a) codomain.
(b) dependent variable.
(c) bijection.
(d) inverse.
(e) essential domain.

 138. When we multiply a + jb by its conjugate, we get
(a) a 2 + b 2

(b) a 2 − b2

x

y

Figure FE-14  Illustration for Final 
Exam Question 136.
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(c) 2a
(d) 2b
(e) 4ab

 139. Which of the following is an equivalence relation?
(a) The “if and only if ” relation.
(b) The “if/then” relation.
(c) The “strictly larger than” relation.
(d) The “larger than or equal” relation.
(e) None of the above.

 140. Consider the following equation:

(x + 1)(x − 3)3(x + 5)5(x − 7)7 = 0

What is the degree of this equation?
(a) 4
(b) 15
(c) 16
(d) 56
(e) We need more information to answer this

 141.  What is the solution to the equation ax / (b + 1) = 3, where x is the unknown, a and b
are constants, a ≠ 0, and b ≠ −1?
(a) x = 3ab + 3a
(b) x = 3a /b + a /3
(c) x = 3b /a + 3ab
(d) x = 3b /a + 3/a
(e) More information is needed to solve this equation

 142. What is 25/45 − 2/9 in lowest terms?
(a) 29/45
(b) 23/45
(c) 1/3
(d) 4/9
(e) 5/11

 143. The decimal-numeral equivalent of the Roman numeral CDXXXII is
(a) 932.
(b) 832.
(c) 732.
(d) 632.
(e) 432.
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 144.  Figure FE-15 shows the graphs of a linear function and a quadratic function in real-
number rectangular coordinates. The origin (0, 0) is where the x and y axes intersect. 
The graphs intersect at two points. Suppose we consider these two functions as a 
system. Based on the information shown,
(a) there are two solutions; both are ordered pairs of real numbers. 
(b) there is a single solution with multiplicity 2; it is an ordered pair of reals.
(c) there is a single solution with multiplicity 2; it is an ordered pair of complex 

numbers.
(d) there are two solutions; one is an ordered pair of reals, and the other is an ordered 

pair of pure imaginary numbers.
(e) there are two solutions; one is an ordered pair of reals, and the other is an ordered 

pair of complex (but not real) numbers.

 145.  Figure FE-16 shows the graphs of two quadratic functions in real-number rectangular 
coordinates. The origin (0, 0) is where the x and y axes intersect. The functions are

f (x) = a1x 2 + b1x + c1

and

g (x) = a2x 2 + b2x + c2

 where all the coefficients and constants are real numbers, and a1 and a2 are both non-
zero. The graphs intersect at a single point. How can we change this system into one that 
we can be certain has no real solutions?
(a) We need more information to answer this.
(b) We can decrease the value of c1, leaving everything else the same.

x

y

Figure FE-15  Illustration for Final Exam 
Question 144.
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(c) We can increase the value of c1, leaving everything else the same.
(d) We can decrease the value of c2, leaving everything else the same.
(e) We can reverse the sign of a2, leaving everything else the same.

 146.  Suppose someone claims that she has come up with a way to solve a three-by-three 
linear system in variables x, y, and z. She tells us to:

 • Take the first equation and solve it for x in terms of y and z.
 • Take the second equation and do the same thing.
 • Make a two-by-two system in y and z from the first two steps.
 • Solve that system.
 • Substitute the solutions for y and z back into the first equation and solve it for x.

 This process will not, in general, work to solve a three-by-three system. Which of the 
following constitutes a fatal flaw in our friend’s scheme?
(a) The process can work only if the system is consistent.
(b) The process completely ignores the third equation.
(c) The process does not use the addition method at any point.
(d) The process does not employ matrix morphing.
(e) The process can produce a solution only if the system is inconsistent.

 147. There’s something else wrong with the process outlined in Question 146. What’s that?
(a) The third “bulleted” step will not actually give us a two-by-two system.
(b) The two-by-two system derived in the third step will be inconsistent.
(c) There is no way to derive an expression for x in terms of y and z.
(d) It will cause us to unwittingly divide by 0.
(e) It will cause us to unwittingly subtract an equation from itself.

x

y

f (x)

g (x)

Figure FE-16  Illustration for Final Exam 
Question 145.



 148. If the discriminant in a quadratic equation is a negative real number, it means that
(a) the equation has two different real roots.
(b) the equation has one real root with multiplicity 2.
(c) the equation has one imaginary root with multiplicity 2.
(d) the equation has two different imaginary or complex roots.
(e) the equation has no roots at all, real or complex.

 149. A mapping is a bijection if and only if it is
(a) reflexive.
(b) a function.
(c) one-to-one and onto.
(d) a subset of its co-domain.
(e) transitive.

 150. Consider the following pair of equations as a two-by-two system:

y = a1x + b1

and

y = a2x + b2

 where a1, a2, b1, and b2 are real numbers, and neither a1 nor a2 are equal to 0. What 
are the smallest and largest numbers of elements that the solution set of such a system 
can have? Assume that the two equations are not identical, and are not some constant 
multiple of each other.
(a) None, and one.
(b) None, and two.
(c) None, and infinitely many.
(d) One, and infinitely many.
(e) Two, and infinitely many.
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These worked-out solutions do not necessarily represent the only way a problem can be fig-
ured out. If you think you can solve a particular problem in a quicker or better way than you 
see here, by all means go ahead! But always check your work to be sure your “alternative” 
answer is correct.

Chapter 1
 1.  There are several ways to figure this out, but they’re all a little “messy.” You can count 

the days out loud and write “hash marks” on a sheet of paper, or you can use a calendar 
and write numerals on it day by day, starting with 0 on June 24 and working up. If you 
want to avoid all that counting, you can figure out the number of days of interest in 
June, July, August, September, and October, and then add them up. Remember that 
in any year, June has 30 days, July has 31 days, August has 31 days, and September has 
30 days. In June, you have 30 − 24 = 6 days of interest; in July you have all 31 days; in 
August you have all 31 days; in September you have all 30 days; in October you have 
2 days of interest. The total is therefore 6 + 31 + 31 + 30 + 2 = 100 days.

 2.  Remember that 1 = I, 5 = V, 10 = X, 50 = L, and 100 = C. The answers are as follows, 
broken down into sums for clarification.
(a) 200 = 100 + 100 = C + C = CC
(b) 201 = 100 + 100 + 1 = C + C + I = CCI
(c) 209 = 100 + 100 + 9 = C + C + IX = CCIX
(d) 210 = 100 + 100 + 10 = C + C + X = CCX

 3.  Remember that M = 1,000, C = 100, X = 10, V = 5, and I = 1. The answers are as 
follows, broken down into sums for clarification.
(a) MMXX = 1,000 + 1,000 + 10 + 10 = 2,020
(b) MMXIX = 1,000 + 1,000 + 10 + 9 = 2,019

587

APPENDIX

A

Worked-Out Solutions to 
Exercises: Chapters 1 to 9

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



(c) MMIX = 1,000 + 1,000 + 9 = 2,009
(d) MMVI = 1,000 + 1,000 + 6 = 2,006

 4.  The number three hundred two trillion, seventy billion, one hundred forty-nine 
million, six thousand, one hundred ten looks like this as a decimal numeral:

302,070,149,006,110

Note the placement of the commas and the ciphers. Also note that we use the American 
billion, which is equivalent to a thousand million.

 5.  This is a slightly whimsical problem. You can add as many ciphers as you want to the 
left of the digit 3 in the answer to the previous problem, and it does not change the 
value of the number it represents. A mathematician might write it as

...,000,000,...,302,070,149,006,110

You can keep “attaching ciphers” forever in the left-hand direction!

 6.  You can make any number in the decimal system ten times as large by adding one 
cipher to its right and then repositioning the commas. Based on the numeral shown 
for the answer to Prob. 4 above, you would get

3,020,701,490,061,100

If you want to make a number a hundred times as large, add two ciphers to its right and 
then reposition the commas. Starting with the numeral shown for the answer to Prob. 4, 
that gives you

30,207,014,900,611,000

If you want to make a number a thousand times as large, add three ciphers to its right and 
then reposition the commas. Starting with the numeral shown for the answer to Prob. 4, 
that gives you

302,070,149,006,110,000

 7.  The number in the final answer to Prob. 6 would be written out in words as three 
hundred two quadrillion, seventy trillion, one hundred forty-nine billion, six million, 
one hundred ten thousand. That’s based on the United States terminology where a 
billion is a thousand million, and a trillion is a million million.

 8.  To solve this problem, tally the values of each digit in the decimal system and then add 
them up, as follows.

• One times one gives you 1
• One times two gives you 2
• Zero times four gives you 0
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• One times eight gives you 8
• Zero times sixteen gives you 0
• One times thirty-two gives you 32

The decimal-numeral equivalent is therefore 1 + 2 + 0 + 8 + 0 + 32 = 43. This is the 
quantity you commonly imagine as forty-three.

 9.  There are at least three ways to solve this problem. You can “cheat” and use Table 1-2. 
To do it manually, note that forty-three, the decimal equivalent as derived in the 
solution to Prob. 8, is equal to five times eight, plus three more. That means you can 
define quantity forty-three as the octal numeral 53. You can also add up the values in 
octal arithmetic. That’s tricky and hasn’t been covered in this chapter, so we won’t show 
it here.

 10.  As with the decimal-to-octal conversion, there are at least three ways to solve this 
problem. You can “cheat” and use Table 1-2. To do it manually, note that forty-three 
is equal to two times sixteen, plus eleven more. In hexadecimal notation, eleven is 
represented by B. That means you can define the quantity forty-three in hexadecimal 
form as the numeral 2B. The last method is to add up the values in hexadecimal
arithmetic. Again, that’s tricky and hasn’t been discussed, so we won’t do it here.

Chapter 2
 1.  The null set is a subset of any set. The null set lacks elements, like an empty bank 

account lacks money. You can say that it contains nothing as an element! If you have 
a certain set A with known elements, you can add nothing, and you always end up 
with the same set A. The null set is a subset of itself, although not a proper subset of 
itself. Look at an example. If you let the written word “nothing” actually stand for 
nothing, then

∅ = { } = {nothing}

and

{nothing} ⊆ {nothing, 1, 2, 3}

so therefore

∅ ⊆ {1, 2, 3}

Keep in mind that a subset is not the same thing as a set element. The null set contains
nothing, but the null set is not itself nothing. An empty bank account is a perfectly valid 
account unless somebody closes it.

 2.  You can build up an infinite number of sets if you start out with nothing. First, take 
nothing and make it an element of a set. That gives you the null set. Then consider the 
set containing the null set, that is, {∅}. This is a legitimate mathematical thing, but 
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it’s not the same thing as the null set. It can be the sole element of another set, namely 
{{∅}}. By now, you should be able to sense where this is leading:

∅
{∅}

{{∅}}
{{{∅}}}

{{{{∅}}}}
{{{{{∅}}}}}

↓
and so on, forever

You started with nothing, and you have turned it into an infinite number of mathematical 
objects! A variation of this idea is handy for “building” numbers, as you’ll see in Chap. 3.

 3.  In Fig. 2-6, set P, represented by the small dark-shaded triangle, is common to (that is, 
shared by) sets A and C. Therefore, region P represents the intersection of sets A and C.
You can write this as

P = A ∩ C

Set Q, represented by the small, dark-shaded, irregular four-sided figure, is fully shared 
by sets B and D. Therefore, region Q represents the intersection of sets B and D, which 
you can write as

Q = B ∩ D

 4.  Whenever two regions are entirely separate, then the sets they represent are disjoint, and 
the intersection of those sets is the null set. You can see from Fig. 2-6 that the only pairs 
of regions that don’t overlap are A and D, B and C, and C and D. Therefore, the only 
null-set intersection pairs are

A ∩ D = ∅
B ∩ C = ∅
C ∩ D = ∅

 5.  The universal set (call it U ) is a subset of itself. That’s trivial, because any set is a subset 
of itself. But U is not a proper subset of itself. Remember, U is the set of all entities, 
real or imaginary. If U were a proper subset of itself, then there would be some entity 
that did not belong to U. That’s impossible; it contradicts the very definition of U !
This little argument is an example of a tactic called reductio ad absurdum (Latin for 
“reduction to absurdity”) that mathematicians have used for thousands of years to prove 
or disprove “slippery statements.” It can work well in a courtroom, too.

 6.  There are plenty of examples that will work here. The set of all even whole numbers, 
Weven, is a proper subset of the set of all whole numbers, W. Both of these sets have 



infinitely many elements. Amazingly enough, you can pair the elements of both sets 
off one-to-one! The mechanics of this goes a little beyond the scope of this chapter, 
but you can get an idea of how it works if you divide every element of Weven by 2, one 
at a time, and then write down the first few elements of the resulting set. When you 
do that, you get

{0/2, 2/2, 4/2, 6/2, 8/2, 10/2, ...}

But that’s exactly the same as W, because when you perform the divisions, you get

{0, 1, 2, 3, 4, 5, ...}

This is one of the strange things “infinity” can do. You can take away every other element 
of a set that has infinitely many elements and that can be written out as an “implied list,” 
and the resulting set is exactly the same “size” as the original set.

 7. Let’s write out the sets again here as “implied lists”:

A = {1, 1/2, 1/3, 1/4, 1/5, 1/6, ...}
 G = {1, 1/2, 1/4, 1/8, 1/16, 1/32, ...}

It’s not hard to see that set G contains all those elements, but only those elements, that 
belong to both sets. Therefore

A ∩ G = G

If you start with set A and then toss in all the elements of G, you get the same set A (with 
certain elements listed twice, but they can count only once). That means set A contains 
precisely those elements that belong to one set or the other, or both, so

A ∪ G = A

 8.  First, isolate all the individual elements of the set {1, 2, 3}. They are 1, 2, and 3. Then 
start the list of subsets by putting down the null set, which is a subset of any set. Then 
assemble all the sets you possibly can, using one or more of the elements 1, 2, 3, and list 
them. You should get

∅
{1}
{2}
{3}

{1, 2}
{1, 3}
{2, 3}

{1, 2, 3}
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 9.  The set {1, {2, 3}} has only two elements: the number 1 and the set {2, 3}. You 
can’t break {2, 3} down and have it remain an element of the original set {1, {2, 3}}. 
Therefore, the set of all possible subsets of {1, {2, 3}} is

∅
{1}

{{2, 3}}
{1, {2, 3}}

 10.  The set {1, {2, {3}}} has two elements: the number 1 and the set {2, {3}}. You cannot 
break {2, {3}} down and have it remain an element of the original set {1, {2, {3}}}. 
Therefore, the set of all possible subsets of {1, {2, {3}}} is

∅
{1}

{{2, {3}}}
{1, {2, {3}}}

When writing down complicated sets like these, always be sure that the number of 
opening braces is the same as the number of closing braces. If they’re different, you’ve 
made a mistake somewhere.

Chapter 3

 1.  This is the ultimate trivial question. In the number-building systems described in this 
chapter, nothing doesn’t represent any number.

 2. No. The number 6 is divisible by 3 without a remainder:

6/3 = 2

Of course, the quotient here, 2, is even. There are plenty of other even numbers that can 
be divided by 3 leaving no remainder.

 3.  When you multiply an odd number by 3, you always get an odd number as the product. 
The reason for this is similar to the reason why any even number times 7 gives you 
another even number. (Proving that was one of the “challenge” problems in this chapter.) 
For the first few odd numbers, multiplication by 3 always produces an odd number:

3 × 1 = 3
3 × 3 = 9

  3 × 5 = 15
  3 × 7 = 21
  3 × 9 = 27



 You can prove that multiplying any odd number by 3 always gives you an odd number if 
you realize that the last digit of an odd number is always odd. Think of an odd number. 
However large it is, it looks like one of the following:

______1
______3
______5
______7
______9

where the long underscore represents any string of digits you want to put there. Now 
think of “long multiplication” by 3. Remember how you arrange the numerals on the 
paper and then do the calculations. You always start out by multiplying the last digits of 
the two numbers together, getting the last digit of the product. The odd number on top, 
which you are multiplying by the number on the bottom, must end in 1, 3, 5, 7, or 9. 
If the number on the bottom is 3, then the last digit in the product must be 3, 9, 5 (the 
second digit in 15), 1 (the second digit in 21), or 7 (the second digit in 27) respectively. 
Therefore, any odd number times 3 is always odd.

 4.  To figure out whether or not 901 is prime, try to break it down into a product of prime 
factors. If you succeed in doing that, then 901 is not prime. If you fail, then 901 is 
prime. First take its square root using a calculator. You’ll get 30 with a decimal point 
and some digits. Round this up to the next whole number, which is 31. Using 
Table 3-1, you can list the set all the primes up to and including 31. That set is

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}

Now, divide 901 by each of these numbers. As things turn out, 901 is divisible by 17 
without a remainder. Therefore, 901 is not prime.

 5.  To find the prime factors of 1,081, start by taking its square root using a calculator. 
You should get 32 with a decimal point and some digits. Round this up to 33. Using 
Table 3-1, list the set all the primes less than or equal to 33. That set is

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}

Divide 1,081 by each of these numbers. You will see that 1,081 is divisible by 23 without 
a remainder. You get

1,081 = 23 × 47

Both of these factors are prime, as you can see by looking at Table 3-1. The number 1,081 
therefore has prime factors of 23 and 47.
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 6.  When you break the number 841 into a product of primes using the same process as 
you did to solve Prob. 5, you’ll see that

841 = 29 × 29

It is a perfect square of a prime.

 7.  When you factor 2,197 into a product of primes (again using the process you did to 
solve Probs. 5 and 6), you’ll see that

2,197 = 13 × 13 × 13

It has three prime factors, all equal to 13. When a natural number is multiplied by itself 
and then the result is multiplied by the original number again, the product is a perfect 
cube. The number 2,197 is a perfect cube of a prime.

 8.  Any composite number can be factored into a product of primes. In the traditional 
sense, all the primes are positive because they are all natural numbers larger than 1. 
Remember from basic arithmetic that whenever you multiply a positive number times 
another positive number, the result is always positive. That means no negative number 
can be composite if we stick to the traditional definition of a prime number.

 9.  Suppose 0 were defined as prime. Then 0 would also be composite, because you can 
multiply 0 by any prime you want, and you always get 0. An even more serious problem 
occurs if we let 1 be called prime. If that were true, then 1 times any other prime 
would be equal to that same prime, making every prime number composite! That’s why 
mathematicians generally refuse to call 0 or 1 prime numbers. But when we don’t allow 
them to be prime, they can’t be composite either, because they can’t be broken down 
into factors from the traditional set of primes {2, 3, 5, 7, 11, 13, 17, 19, ...}.

 10.  In Fig. 3-5, you start with 0 and proceed through the positive and negative integers 
alternately. You can create an “implied one-ended list” of the entire set Z of integers 
starting with 0, one after the other, this way:

Z = {0, 1, −1, 2, −2, 3, −3, ...}

If you pick any integer, no matter how large positively or negatively, this “implied one-ended 
list” will eventually get to it. You can pair the set of all natural numbers one-to-one with the 
set of all integers like this, with natural numbers on the left and integers on the right:

 0 ↔ 0
 1 ↔ 1
 2 ↔ −1
 3 ↔ 2

4 ↔ −2
 5 ↔ 3

6 ↔ −3
↓

and so on, forever



Chapter 4
 1. The first sum works out like this:

a = |−3 + 4 + (−5) + 6| 
 = |2|
 = 2

The second sum works out like this:

b = |−3| + |4| + |−5| + |6|
 = 3 + 4 + 5 + 6
 = 18

From these facts, you can conclude that for integers, the absolute value of a sum is not 
necessarily equal to the sum of the absolute values.

 2. The first expression simplifies like this, step-by-step:

(3 + 5) − (7 + 9) − (11 + 13) − 15
 = 8 − 16 − 24 − 15
 = −47

The second expression simplifies like this, step-by-step:

3 + (5 − 7) + (9 − 11) + (13 − 15)
 = 3 + (−2) + (−2) + (−2)
 = −3

 3.  When you see no parentheses in a string of sums and differences, all the numbers or 
variables are in effect “outside the parentheses,” so you should perform the operations 
straightaway from left to right. Here is the original expression:

3 + 5 − 7 + 9 − 11 + 13 − 15

In order, the sums and differences evolve as follows:

3 + 5 = 8
8 − 7 = 1

 1 + 9 = 10
 10 − 11 = −1

−1 + 13 = 12
 12 − 15 = −3
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 4.  It makes sense to consider warming as a positive temperature change, and cooling as a 
negative temperature change (although there is no technical reason why you couldn’t 
do it the other way around). Here are the year-by-year records once again 
for reference:

• January 2005 averaged 5 degrees cooler than January 2004.
• January 2004 averaged 2 degrees warmer than January 2003.
• January 2003 averaged 1 degree cooler than January 2002.
• January 2002 averaged 7 degrees warmer than January 2001.
• January 2001 averaged the same temperature as January 2000.
• January 2000 averaged 6 degrees cooler than January 1999.
• January 1999 averaged 3 degrees warmer than January 1998.

If positive change represents warming, then going backward in time you have year-to-
year changes of −5, 2, −1, 7, 0, −6, and 3 degrees. You add these integers to discover the 
change in average temperature between January 1998 and January 2005:

(−5) + 2 + (−1) + 7 + 0 + (−6) + 3 = 0

In Hoodopolis, there was no difference in the average temperature for January 2005 as 
compared with January 1998.

 5. This works whenever b = a. You can then substitute a for b and get

a − a = a − a

You could also substitute b for a, getting

b − b = b − b

Obviously, either of these equations will hold true for all possible integers.

 6.  This always works if c = 0. With that restriction, a and b can be any integers you want. 
In order to see why, you can start with the original equation:

(a − b) + c = a − (b + c)

“Plug in” 0 for c. Then you get

(a − b) + 0 = a − (b + 0)

which simplifies to

a − b = a − b

That equation holds true for any a and b you could possibly choose. The values of a and 
b don’t have to be the same.



Table A-1. Solution to Prob. 8 in Chap. 4. This S/R proof shows 
how you can reverse the order in which four integers a, b, c, and d are 
added, and get the same sum. As you read down the left-hand column, 

each statement is equal to every statement that came above it.

Statements                            Reasons

a + b + c + d Begin here
a + (b + c + d ) Group the last three integers
a + (d + c + b) Result of the “challenge” where it was proved 
   that you can reverse the order of a sum of three 

integers
(d + c + b) + a Commutative law for the sum of a and 

 (d + c + b)
d + c + b + a Ungroup the first three integers
Q.E.D. Mission accomplished

Here are a couple of extra-credit exercises if you want a further challenge. Does the 
original rule work when a = 0, but you let b and c be any integers? Does it work when 
b = 0, but you let a and c be any integers? You’re on your own!

 7.  This always works if c = 0. Then a and b can be any integers you want. Here’s the 
original equation:

(a − b) − c = a − (b − c)

“Plug in” 0 for c. Then you get

(a − b) − 0 = a − (b − 0)

which simplifies to

a − b = a − b

Here are a couple more extra-credit exercises. Does the original rule work when a = 0, 
but you let b and c be any integers? Does it work when b = 0, but you let a and c be any 
integers? Have fun!

 8.  See Table A-1. Follow each statement and reason closely so you’re sure how it follows 
from the statements before. This proves that for any four integers a, b, c, and d,

a + b + c + d = d + c + b + a

 9.  Let’s start with the original expression, and then morph it into the second one. We 
begin with this:

(a + b + c) + d
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We can “zip up” the sum b + c, and call the “package” e. Now our expression looks like 
this:

(a + e) + d

The associative law for addition tells us that we can rewrite this as

a + (e + d )

Now let’s “unzip” e so it turns back into the sum b + c (which it always has been, after 
all), to get

a + (b + c + d )

That’s the result we want, proving that for any four integers a, b, c, and d,

(a + b + c) + d = a + (b + c + d )

If this seems like a trivial exercise, keep in mind that you’re getting your brain into shape 
to do more complicated tricks some day.

 10.  The first expression can be simplified as shown in Table A-2, which breaks the process 
down into statements and reasons. The second expression can be simplified as shown in 
Table A-3. These are called S/R derivations. They’re not intended as proofs, but to show 
how an expression can be morphed into another expression. In this particular situation, 
the two original expressions turn out to be equivalent for all integers a, b, and c.

Table A-2. Solution to the first part of Prob. 10 in Chap. 4. 
As you read down the left-hand column, each statement is equal 

to every statement that came above it.

Statements                             Reasons

(a + b − c) + (a − b + c) Begin here
[a + b + (−c)] + [a + (−b) + c]  Change subtractions into negative additions; 

  replace original parentheses with brackets for 
temporary clarification

a + b + (−c) + a + (−b) + c Get rid of outer sets of brackets; they are not 
 necessary in straight sums

a + a + b + (−b) + c + (−c) Commutative law for addition, generalized
a + a b + (−b) = 0
  and
  c + (−c) = 0
  so the b’s and c’s “cancel out”



Chapter 5
 1.  If you start with a positive integer p and multiply by −3, you get a negative integer 

whose absolute value is 3 |p|. If you start with a negative integer n and multiply by −3,
you get a positive integer whose absolute value is 3 |n|.

 2.  If you start with any integer and keep multiplying by −3 over and over, the polarity
(that is, the “positivity” or “negativity”) of the end product keeps alternating, and the 
absolute value increases by a factor of 3 every time. So with any integer q, whether 
positive or negative, you get

|−3q| = 3 |q|
|−3 × (−3q)| = 3 × 3 |q|

|−3 × (−3) × (−3q)| = 3 × 3 × 3 |q|
↓

and so on, forever

As you can see, the absolute value grows rapidly as you keep on multiplying by −3, unless 
the starting integer q happens to be 0.

 3.  Evaluating this requires close attention and patience. Here is the initial expression for 
reference:

4 + 32 / 8 × (−2) + 20 / 5 / 2 − 8

Table A-4 is an S/R breakdown of the evaluation process.

Table A-3. Solution to the second part of Prob. 10 in Chap. 4. 
As you read down the left-hand column, each statement is equal 

to every statement above it.

Statements                          Reasons

a + (b − c) + (a − b) + c Begin here
a + [b + (−c)] + [a + (−b)] + c Change subtractions into negative additions;

  replace original parentheses with brackets 
for temporary clarification

a + b + (−c) + a + (−b) + c Get rid of brackets; they served a good 
 purpose but are not necessary in straight sums

a + a + b + (−b) + c + (−c) Commutative law for addition, generalized
a + a b + (−b) = 0
  and
  c + (−c) = 0
  so the b’s and c’s “cancel out”
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 4.  See Table A-5. Follow each statement and reason closely so you’re sure how it follows 
from the statements before. This proves that for any four integers a, b, c, and d,

abcd = dcba

 5. Here are the steps in the calculation process, using parentheses where needed:

 −15 × (−45) = 675
 675 / (−25) = −27
 −27 × (−9) = 243
 243 / (−81) = −3
 −3 × (−5) = 15

 6.  This always works if c = 1. Then a can be any integer, and b can be any integer except 0. 
Here’s the original equation:

(a /b)/c = a /(b /c)

Table A-4. Solution to Prob. 3 in Chap. 5. As you read down the 
left-hand column, each statement is equal to every statement above it.

Statements                      Reasons

4 + 32 / 8 × (−2) + 20 / 5 / 2 − 8 Begin here
4 + 32 / [8 × (−2)] + 20 / 5 / 2 − 8 Group the multiplication
4 + 32 / (−16) + 20 / 5 / 2 − 8 Do the multiplication
4 + [32/(−16)] + [(20/5)/2)] − 8 Group the divisions
4 + (−2) + [(20/5)/2] − 8 Do the division 32/(−16) = −2
4 + (−2) + (4/2) − 8 Do the division 20/5 = 4
4 + (−2) + 2 − 8 Do the division 4/2 = 2
4 + (−2) + 2 + (−8) Convert the subtraction to negative 

 addition
−4 Do the additions from left to right

Table A-5. Solution to Prob. 4 in Chap. 5. As you read down the left-
hand column, each statement is equal to every statement above it.

Statements                               Reasons

abcd Begin here
a(bcd ) Group the last three integers
a(dcb)  Result of the “challenge” where it was proved that

  you can reverse the order of a product of three 
integers

(dcb)a Commutative law for the product of a and (dcb)
dcba Ungroup the first three integers
Q.E.D. Mission accomplished



“Plug in” 1 for c. Then you get

(a /b) /1 = a /(b/1)

which simplifies to

a /b = a /b

Here is an opportunity get some extra credit. Does the original rule work when a = 1, but 
you let b and c be any integers except 0? Does it work when b = 1, but you let a be any 
integer and c be any integer except 0?

 7.  This, again, always works if c = 1. Then a and b can be any integers. Here’s the original 
equation:

(ab)/c = a(b /c)

“Plug in” 1 for c. Then you get

(ab)/1 = a(b /1)

which simplifies to

ab = ab

Now, can you guess what’s coming? Another extra-credit workout! Does the original rule 
hold true when a = 1, but you let b be any integer and c be any integer except 0? Does it 
work when b = 1, but you let a be any integer and c be any integer except 0?

 8.  Let’s start with the distributive law of multiplication over addition in its left-hand form. 
You’ll notice that we’re using different letters of the alphabet. That will help keep you 
from sinking into an “abc rut” with the naming of variables. Otherwise, the law is stated 
in exactly the same way. We can write the original form of the law like this:

p(m + n) = pm + pn

where n,m, and p are integers. Now, the solution is only a matter of applying the commutative 
law for multiplication three times, once for each of the three products above:

(m + n)p = mp + np

Q.E.D. That’s all there is to it!

 9.  The variables have unfamiliar names for the same reason as in Prob. 8. See Table A-6. 
This proves that for any two integers d and g,

−(d + g) = −d − g

 10.  Again, unfamiliar variable names can keep your attention on the way things work, 
without getting stuck in the “abc routine” of rote memorization. See Table A-7. This 
proves that for any two integers h and k,

−(h − k) = k − h
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Chapter 6
 1.  The ratio of the top wind speed in a “category 1” hurricane to the top wind speed in a 

“category 4” hurricane is 95:155. It’s easy to see that both of these integers are divisible 
by 5, because they both end in 5. When you divide both the numerator and the 
denominator by 5, you get 19:31. These integers are both prime, so this expression of 
the ratio is in lowest terms. The ratio of the top wind speed in a “category 4” hurricane 
to the top wind speed in a “category 1” hurricane is found by switching the numerator 
and denominator, getting 31:19.

 2.  The ratio of the absolute temperature of the boiling point to the absolute temperature 
of the freezing point, expressed in kelvins, is 373:273. To get this in lowest terms, 
you must find an integer that “divides out” from both of these numbers until the 
denominator becomes prime. That’s not as obvious here as in Prob. 1! Start by trying to 
factor 373 into a product of primes. The square root of 373 is equal to 19 followed by 

Table A-6. Solution to Prob. 9 in Chap. 5. As you read down the left-
hand column, each statement is equal to every statement above it.

Statements                              Reasons

−(d + g) Begin here
(d + g)(−1) Principle of the sign-changing element
(−1)(d + g) Commutative law for multiplication
(−1)d + (−1)g Distributive law for multiplication over addition
−d + (−g)  Principle of the sign-changing element (the other 

 way around)
−d − g Addition of a negative is the same thing as 

 subtraction
Q.E.D. Mission accomplished

Table A-7. Solution to Prob. 10 in Chap. 5. As you read down the 
left-hand column, each statement is equal to every statement above it.

Statements                               Reasons

−(h − k) Begin here
(h − k)(−1) Principle of the sign-changing element
h(−1) − k(−1)  Right-hand distributive law for multiplication 

 over subtraction
−h − (−k)  Principle of the sign-changing element (the other 

 way around)
−h + k Subtraction of a negative is the same thing as 

 addition of a positive
k + (−h) Commutative law for addition
k − h Addition of a negative is the same thing as 

 subtraction of a positive
Q.E.D. Mission accomplished



a decimal point and some digits. Round this up to 20. The primes less than 20 are 2, 3, 
5, 7, 11, 13, 17, and 19. As you divide 373 by each of these primes, you’ll see that none 
of them gives you a quotient without a remainder. That means 373 is itself a prime 
number, so the ratio 373:273 is in lowest terms.

 3.  You can use the “brute-force” method and factor both the numerator and the 
denominator of 231/230 into primes, and you’ll discover that the prime factors that 
make up the numerator are entirely different from the prime factors that make up the 
denominator. Therefore, the fraction 231/230 has to be in lowest terms. But there’s 
an easier way to see this, and you don’t have to do any work to figure it out. Note that 
the absolute values of the numerator and the denominator differ by only 1, and the 
denominator is positive. Now think: what will happen if you divide both the numerator 
and the denominator by any positive integer other than 1, in an attempt to reduce the 
fraction? The resulting numerator and denominator will always have absolute values 
that differ by less than 1, so they can’t both be integers. But in order to be a “legitimate 
fraction,” both the numerator and the denominator must be integers.

 4.  You want to see if −154/165 is in lowest terms, and if it is not, to reduce it. First, 
convert both the numerator and the denominator into products of primes and then 
attach the extra “factor” of −1 to the numerator, like this:

−154 = −1 × 2 × 7 × 11

and

165 = 3 × 5 × 11

Next, use these products to build a fraction in which both the numerator and the 
denominator consist of prime factors, and the numerator has the extra “factor” −1:

(−1 × 2 × 7 × 11) / (3 × 5 × 11)

The common prime factor is 11. Remove it from both the numerator and the denominator, 
getting

(−1 × 2 × 7) / (3 × 5)

That’s −14/15. You can sense immediately that this is in lowest terms because the 
numerator and the denominator have absolute values that differ by only 1, and the 
denominator is positive.

 5.  When you have two fractions in lowest terms and multiply them, the product is 
sometimes in lowest terms, but not always. First, consider this:

3/5 × 7/11 = (3 × 7) / (5 × 11)
= 21/55

This product is in lowest terms. You know this because the numerator is the product 
of the primes 3 and 7, and the denominator is the product of the primes 5 and 11. 
When the numerator and denominator of a fraction are both factored into primes, the 
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denominator is positive, and no prime in the numerator is the same as any prime in the 
denominator, then that fraction is in lowest terms.
 With this knowledge, it’s not hard to think of a couple of fractions that are in lowest 
terms individually, but that produce a fraction that is not in lowest terms when they are 
multiplied by each other. Take a look at this:

3/5 × 5/7 = (3 × 5) / (5 × 7)
= 15/35

Both of the original fractions are in lowest terms here, but the product is not. You can 
factor 5 out of both the numerator and the denominator of 15/35, reducing it to 3/7.

 6.  When you have two fractions in lowest terms and divide one by the other, the quotient 
is sometimes in lowest terms, but not always. This can be seen by “mutating” the 
solution to Prob. 5. First, consider this:

(3/5) / (11/7) = 3/5 × 7/11
 = (3 × 7) / (5 × 11)
 = 21/55

This is in lowest terms, as you saw in the solution to Prob. 5. Now try this:

(3/5) / (7/5) = 3/5 × 5/7
 = (3 × 5) / (5 × 7)
 = 15/35

Again as you saw in the solution to Prob. 5, this quotient is not in lowest terms, even 
though the dividend and divisor fractions are.

 7. Table A-8 is an S/R derivation proving that

(a /b) / [(c /d ) / (e /f )] = ade / bcf

Table A-8. Solution to Prob. 7 in Chap. 6. The result is a formula 
for repeated division of fractions, where the second pair of fractions is 
divided first. As you read down the left-hand column, each statement is 

equal to all the statements above it.

Statements Reasons

(a /b) / [(c /d ) / (e/f )] Begin here
(a /b) / (cf / de) Apply the formula for division of c /d by e /f
(a /b) / (g /h) Temporarily let cf = g and de = h, and substitute

 the new names in the previous expression
ah / bg Apply the formula for division of a/b by g /h
ade / bcf Substitute cf for g and de for h in the previous 

 expression



Compare this with the result of the “challenge” problem, where you found out that

[(a /b) / (c /d )] / (e /f ) = adf / bce

 8. Table A-9 is an S/R proof that if a, b, c, and d are nonzero integers, then

(a /b)(c /d ) = (c /d )(a /b)

Therefore, the commutative property holds for the multiplication of fractions, and 
indeed for the multiplication of any two rational numbers. Note the fourth step of this 
proof, in which the rule for multiplication of fractions is applied “backwards.” We can 
get away with this because equality works in both directions! This fact, which may seem 
trivial to you but is really quite significant, is one of three aspects of equality known as the 
reflexive, symmetric, and transitive properties. You should know what these terms mean. 
The reflexive property tells us that for any quantity a,

a = a

The symmetric property tells us that for any two quantities a and b,

If a = b, then b = a

The transitive property tells us that for any three quantities a, b, and c,

If a = b and b = c, then a = c

Whenever any means of comparing things has all three of these properties, then it’s 
called an equivalence relation. Equality is the most common example of an equivalence 
relation. But there are others, such as the logical connector “if and only if ” or “iff,” 
symbolized by a double-shafted, double-headed arrow, often with a little extra space 
on either side (⇔).

Table A-9. Solution to Prob. 8 in Chap. 6. This shows that the 
commutative law holds for the multiplication of fractions. As you 
read down the left-hand column, each statement is equal to all the 

statements above it.

Statements                             Reasons

(a /b)(c /d ) Begin here
ac / bd Formula for multiplication of fractions
ca / db Commutative law for multiplication of integers
  applied to numerator and denominator
(c/d )(a/b) Formula for multiplication of fractions
  applied “backwards”
Q.E.D. Mission accomplished
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 9.  Table A-10 shows that the associative property of multiplication holds for any three 
fractions. If we have fraction of the form a/b, another of the form c /d, and a third of 
the form e /f, where a, c, and e are integers, and b, d, and f are positive integers, then

[(a /b)(c /d )](e /f ) = (a/b)[(c /d )(e /f )]

Do you notice that this proof has a certain symmetry? First, we mold the expression, 
in two “steps up,” into a form where we can apply the associative law for multiplying 
integers. Then we invoke that law. Finally we mold the expression, in two “steps back 
down,” into the form we want.

 10.  Let’s explore this situation and see what sorts of “clues” we can find. We’ve been told 
that there are four integers a, b, c, and d, such that

(a/b) / (c /d ) = (c /d ) / (a /b)

If we use the rule for division of one fraction by another on both sides of this equation, 
we get

ad / bc = cb / da

Invoking the commutative law for multiplication in the numerator and denominator on 
the right-hand side of the equals sign, we see that

ad / bc = bc / ad

Table A-10. Solution to Prob. 9 in Chap. 6. This shows that the 
associative law holds for the multiplication of fractions. As you 

read down the left-hand column, each statement is equal to all the 
statements above it.

Statements                          Reasons

[(a /b)(c /d )](e/f ) Begin here
(ac / bd )(e /f ) Formula for multiplication of a/b by c /d
(ac)e / (bd )f Formula for multiplication of (ac / bd ) by e /f
a(ce) / b(df ) Associative law for multiplication of integers
  applied to numerator and denominator
(a /b)(ce / df ) Formula for multiplication of fractions
    applied “backward” to turn quotient of 

products into product of quotients
(a/b)[(c/d )(e/f )] Formula for multiplication of fractions
    applied “backward” (again!) to turn quotient 

of products into product of quotients
Q.E.D. Mission accomplished



We aren’t allowed to get away with trivial solutions, such as letting all the integers be equal 
to 1 or letting them all be equal to −1. But suppose that a = 7, b = 5, c = 14, and d = 10. 
(This isn’t the only example we can use, but it should give you the general idea.) Then

ad / bc = (7 × 10) / (5 × 14)
 = 70/70
 = 1

and

bc / ad = (5 × 14) / (7 × 10)
 = 70/70
 = 1

Let’s “plug in” the values a = 7, b = 5, c = 14, and d = 10 to the original equation and see 
what we get:

(a /b) / (c /d) = (c /d) / (a /b)

therefore

(7/5) / (14/10) = (14/10) / (7/5)

 Note that 7/5 and 14/10 actually represent the same rational number. All we’ve really 
done here is show that 1 = 1, in a roundabout way.

Chapter 7
 1.  Figure A-1 shows a number line that covers the range of positive rational numbers from 

10 up to 100,000. To find the number of orders of magnitude, subtract the powers of 10. 

10
5

100,000

10
4

10,000

10
3

1,000

10
2

100

10
1

10

Figure A-1  Illustration for the solution 
to Prob. 1 in Chap. 7.
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Here, 100,000 = 105 and 10 = 101. We have 5 − 1, or 4, so there are four orders of 
magnitude in this span. Another way to see this is to count the number of intervals between 
“hash marks” on the number line.

 2.  Figure A-2 shows a number line that covers the range of positive rational numbers from 
30 up to 300,000. In this case, we can divide the larger number by the smaller, and 
then count the number of ciphers in the quotient. We get

300,000 / 30 = 10,000

These two numbers differ by four orders of magnitude, the same extent as the two 
numbers differ in Prob. 1. We can also count the number of intervals between hash 
marks, just as in Prob. 1.

 3.  In this situation, the larger number is 75,000,000 and the smaller number is 330. If we 
divide the larger by the smaller, we get 227,272 and a fraction. That’s between a factor 
of 100,000 (or 105) and 1,000,000 (or 106). We can therefore say that 75,000,000 is 
between five and six orders of magnitude larger than 330. Right now, that’s the best we 
can do. (It’s possible to come up with a more precise value, but that involves logarithms,
which we have not yet studied.)

 4. The answers, along with explanations, are as follows:
(a)  The number 4.7 is equivalent to 4-7/10. The fractional part here is in lowest terms, 

because the numerator, 7, is prime.
(b)  The number −8.35 is equivalent to −8-35/100. The fractional part can be reduced to 

7/20, so the entire expression becomes −8-7/20. Note the difference in appearance, as 
well as the difference in purpose, between the minus sign and the dash!

(c)  The number 0.02 has no integer portion. The fractional part is 2/100, which 
reduces to 1/50. Therefore, the entire expression is 1/50.

(d) The number −0.29 has no integer portion. The fractional part is −29/100, which is 
already in lowest terms because the absolute value of the numerator, 29, is prime and 
is not a prime factor of the denominator. Therefore, the entire expression is −29/100.
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Figure A-2  Illustration for the solution 
to Prob. 2 in Chap. 7.



 5. The answers, along with explanations, are as follows:
(a) We have the number 4-7/10. We can convert the integer part, which is 4, into 

10ths by multiplying it by 10 and then dividing the result by 10, getting

(4 × 10) / 10 = 40/10

  The entire number is therefore

40/10 + 7/10 = (40 + 7) / 10
 = 47/10

(b)  We start with the number −8-7/20. We convert the integer part, −8, into 20ths by 
multiplying and then dividing by 20, getting

(−8 × 20) / 20 = −160/20

  The entire number is therefore

−160/20 + (−7/20) = (−160 − 7) / 20
 = −167/20

(c)  The number 1/50 is a fraction already, and has been reduced to lowest terms. 
There’s nothing further for us to do here!

(d)  This situation is the same as in part (c). We already have the final expression in the 
form of the starting number, −29/100.

 6.  The easiest way to work out these problems is to input the numerator into a calculator, 
and then divide by the denominator. When we do that, we get the following results.
(a) 44/16 = 2.75
(b) −81/27 = −3
(c) 51/13 = 3.923076923076923076...
(d) −45/800 = −0.05625

In case (c), you’ll need a calculator that can display a lot of digits if you want to be certain 
of the repeating pattern of digits to the right of the decimal point. (It’s 923076.) If you 
don’t have such a calculator, you can perform old-fashioned, manual long division to 
discover the pattern.

 7.  This problem can be solved in two steps. First, we use a calculator or long division to 
determine the decimal equivalent of 1/17. We get this endless repeating decimal:

0.05882352941176470588235294117647...

The repeating sequence of digits is 0588235294117647. The initial cipher is important 
here! Next, we count up the number of digits in this sequence, including the cipher at the 
beginning. There are 16 digits in the repeating string. We construct a fraction with the 
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repeating sequence in the numerator and a string of 16 digits, all 9s, in the denominator, 
inserting commas to make the large numbers more readable. That gives us

0,588,235,294,117,647 / 9,999,999,999,999,999

The initial cipher can now be removed. It was only necessary to be sure we put the correct 
number of 9s in the denominator. The final answer is:

588,235,294,117,647 / 9,999,999,999,999,999

If you want, you can check this by dividing it out using a calculator with a large display, 
such as the one in a computer. You should get the same result as we got when we divided 
1 by 17. Another way to check this is to divide the denominator of the above fraction by 
the numerator (that is, take the quotient “upside-down”). You should get exactly 17.

 8.  The number we are given to start with is 2.892892892.... To convert this to a ratio of integers, 
we first write down the part of the expression to the right of the decimal point, like this:

. 892 892 892 ...

From this, we know that fractional part of the expression is 892/999. We put back the 
whole-number part, getting

2-892/999

Now we must convert 2 to a fraction with a denominator 999. We multiply 2 by 999, 
getting 1,998. This goes into the numerator. Now we have two fractions that we can 
easily add to produce the final ratio:

 892 / 999 + 1,998 / 999 = (892 + 1,998) / 999
 = 2,890 / 999

It is always a good idea to check the results of calculations like this by dividing out on a 
calculator. In this case, the quotient is 2.892892892..., the original number in decimal form.

 9.  We can be certain that this decimal expansion, which we have been told is an endless 
string of digits, has a repeating pattern. The original quotient is a rational number by 
definition. Remember, any rational number can be expressed as either a terminating 
decimal or an endless repeating decimal. The repeating pattern of digits in the decimal 
expansion might be incredibly long, but it is finite.

 10.  This is one of the most baffling problems in mathematics. The trouble comes up 
because we’re trying to compare hard reality with pure theory. Even the most powerful 
supercomputer can be confused by a string-of-digits problem if the repeating pattern is 
complicated enough. But the fact that a pattern can’t be discovered in a human lifetime 
does not prove conclusively that there is not a pattern! It works the other way, too. If we 
see a long string of digits repeating many times, we can’t be sure it will repeat endlessly, 
unless we know that there’s a ratio of integers with the same value.



Chapter 8
 1.  When a negative number is raised to an even positive integer power, the result is always 

a positive number. When a negative number is raised to an odd positive integer power, 
the result is always a negative number.

 2. The answers, along with explanations, are as follows.
(a) If we raise a base of −2 to increasing integer powers starting with 1, we get this sequence:

(−2)1, (−2)2, (−2)3, (−2)4, (−2)5, ...

  When we multiply these out, we get

−2, 4, −8, 16, −32, ...

   The numbers alternate between negative and positive, and their absolute values double 
with each repetition. This sequence “runs away” toward both “positive infinity” and 
“negative infinity”!

(b) If we do the same thing with a base of −1, we get

(−1)1, (−1)2, (−1)3, (−1)4, (−1)5, ...

  Multiplying these out gives us

−1, 1, −1, 1, −1, ...

  The numbers simply alternate between −1 and 1.
(c) If we carry out the same process with a base of −1/2, we get

(−1/2)1, (−1/2)2, (−1/2)3, (−1/2)4, (−1/2)5, ...

  Multiplying these out produces

−1/2, 1/4, −1/8, 1/16, −1/32, ...

   The numbers again alternate between negative and positive, and their absolute values get 
half as large with each repetition. This sequence converges toward 0 “from both sides.”

 3. Here are the answers. Note how they “mirror” the results of Prob. 2.
(a) If we raise a base of −2 to smaller and smaller negative integer powers starting with 

−1, we get this sequence:

 (−2)−1, (−2)−2, (−2)−3, (−2)−4, (−2)−5, ...

  This is the same as

1/(−2)1, 1/(−2)2, 1/(−2)3, 1/(−2)4, 1/(−2)5, ...
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  When we multiply these out, we get

1/(−2), 1/4, 1/(−8), 1/16, 1/(−32), ...

  which is the same as

−1/2, 1/4, −1/8, 1/16, −1/32, ...

   The numbers alternate between negative and positive, and their absolute values get half as 
large with each repetition. This sequence is identical to the solution for Problem 2(c).

(b) If we do the same thing with a base of −1, we get

(−1)−1, (−1)−2, (−1)−3, (−1)−4, (−1)−5, ...

  This is the same as

1/(−1)1, 1/(−1)2, 1/(−1)3, 1/(−1)4, 1/(−1)5, ...

  Multiplying these out gives us

1/(−1), 1/1, 1/(−1), 1/1, 1/(−1), ...

  which is the same as

−1, 1, −1, 1, −1, ...

   The numbers simply alternate between −1 and 1. This result is identical with the 
solution for Prob. 2(b).

(c) Finally, let’s do the process with a base of −1/2. We get the sequence

(−1/2)−1, (−1/2)−2, (−1/2)−3, (−1/2)−4, (−1/2)−5, ...

  This is the same as

1/(−1/2)1, 1/(−1/2)2, 1/(−1/2)3, 1/(−1/2)4, 1/(−1/2)5, ...

  which is the same as

1/(−1/2), 1/(1/4), 1/(−1/8), 1/(1/16), 1/(−1/32), ...

  which can be simplified to

−2, 4, −8, 16, −32, ...

  That’s the same thing we got when we solved Problem 2(a).



 4.  The expression can be simplified to a sum of individual terms when we remember 
that squaring any quantity (that is, taking it to the second power) is the same thing as 
multiplying it by itself. Then we can use the results of the final “Challenge” in Chap. 5. 
Step-by-step, we get:

( y + 1)2 = ( y + 1)( y + 1)
= yy + y1 + 1y + (1 × 1) 
= y2 + y + y + 1
= y2 + 2y + 1

 5.  This problem can be solved just like Prob. 4, but we have to pay careful attention 
because of the minus sign:

( y − 1)2 = ( y − 1)( y − 1)
 = yy + y(−1) + (−1y) + [(−1) × (−1)]
 = y2 + (−y) + (−y) + 1
 = y2 − 2y + 1

 6.  Let’s start with the generalized addition-of-exponents (GAOE) rule as it is stated in the 
chapter text. Here it is again, with the exponent names changed for variety! For any 
number a except 0, and for any rational numbers p and q,

apaq = a (p + q)

Suppose r is another rational number. Let’s multiply both sides of the above equation by ar.
This gives us

(a pa q)a r = a(p + q)ar

According to the rule for the grouping of factors in a product, we can take the parentheses 
out of the left-hand side of the above equation and get

a pa qa r = a(p + q)ar

The left-hand side of the equation now contains the expression we want to evaluate. Let’s 
consider (p + q) to be a single quantity. We can then use the GAOE rule on the right-
hand side of this equation, getting

a pa qa r = a[(p + q) +r]

Again, we invoke the privilege of ungrouping, this time to the addends in the exponent 
on the right-hand side. This gives us

a pa qa r = a(p + q + r)

Q.E.D. Mission accomplished!
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 7.  This S/R proof is shown in Table A-11. We can “legally” take the r th power of both sides 
in line 2 of the proof even if r is a reciprocal power. Remember, if there is any positive-
negative ambiguity when taking a reciprocal power, the positive value is the “default.”

 8.  We can start by stating the generalized multiplication-of-exponents (GMOE) rule as 
it appears in the chapter text. The exponent names are changed to keep us out of a 
“rote-memorization rut,” and also to conform to the way the problem is stated. For any 
number x except 0, and for any rational numbers r and s,

(xr)s = xrs

Applying the commutative law for multiplication to the entire exponent on the right-
hand side of this equation, we get

 (xr)s = xsr

Finally, we can invoke the GMOE rule “in reverse” to the right-hand side, obtaining

 (x r)s = (x s)r

Q.E.D. Mission accomplished!

 9.  Let’s suppose that x is a positive number. It can by any number we want, as long as it is 
larger than 0. We take the 4th root or 1/4 power of x, and then square the result. That 
gives us

(x 1/4)2

According to the GMOE rule, that is the same as

x (1/4)×2

Table A-11. Solution to Prob. 7 in Chap. 8. This shows that the 
multiplication-of-exponents rule applies to a “power of a power of 

a power.” As you read down the left-hand column, each statement is 
equal to all the statements above it.

Statements                                 Reasons

(ap)q = apq GMOE rule as given in Chap. 8 text, where a is any
 number except 0, and p and q are rational numbers

[(ap)q]r = (apq)r Take rth power of both sides, where r is a rational 
 number

[(ap)q]r = a (pq)r Consider (pq) as a single quantity and then use 
 GMOE rule on right-hand side

[(ap)q]r = apqr Ungrouping of products in exponent on right-hand
 side

Q.E.D. Mission accomplished



which simplifies to x 2/4. The fraction 2/4 can be reduced to 1/2. That means we actually 
have x raised to the 1/2 power, or the square root of x.

 10.  Imagine that y is a positive number. We take the 6th power of y, and then take the cube 
root or 1/3 power of the result. That gives us

(y 6)1/3

According to the GMOE rule, that is the same as

y 6× (1/3)

which simplifies to y 6/3 and then reduces to y2.

Chapter 9
 1.  We can suspect that quantity (d), 271/2, is irrational. It is not a natural number. When 

we use a calculator to evaluate it, we get 5.196... followed by an apparently random 
jumble of digits. That suggests its decimal expansion is endless and nonrepeating. The 
other three quantities can be evaluated and found rational:
(a) 163/4 = (161/4)3 = 23 = 8
(b) (1/4)1/2 = 1/(41/2) = 1/2
(c) (−27)−1/3 = 1/(−271/3) = 1/(−3) = −1/3

 2.  If we have an irrational number expanded into endless, nonrepeating decimal form, 
we can multiply it by any natural-number power of 10 and always get the same string 
of digits. The only difference will be that the decimal point moves to the right by one 
place for each power of 10. As an example, consider the square root of 7, or 71/2. Using 
a calculator with a large display, we see that this expands to

71/2 = 2.64575131106459059...

As we multiply by increasing natural-number powers of 10, we get this sequence of 
numbers, each one 10 times as large as the one above it:

10 × 71/2 = 26.4575131106459059...
 100 × 71/2 = 264.575131106459059...
 1,000 × 71/2 = 2,645.75131106459059...
 10,000 × 71/2 = 26,457.5131106459059...

↓
and so on, as long as we want

These are all endless non-repeating decimals, so they’re all irrational numbers. This will 
happen for any endless non-repeating string of digits.
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 3.  All of these sets are infinite, and the elements of each set can be completely defined by 
means of an “implied list.” Therefore, the cardinality of every one of these sets is ℵ0.
We can pair off any of these sets one-to-one with the set N of naturals. As an optional 
exercise, you might want to show how this can be done. Here’s a hint: Multiply the 
naturals all by 2, 10, 100, or any whole-number power of 10 to create “implied lists” 
for the sets.

 4. The original equation is

36x + 48y = 216

When we divide through by 12 on either side, we get

 (36x + 48y)/12 = 216/12

which can be morphed to

 (36/12)x + (48/12)y = 18

and finally to

3x + 4y = 18

That’s as simple as we can get it.

 5.  To figure this out, note that 18 = 9 × 2. Therefore, according to the power of product 
rule, we have

181/2 = (9 × 2)1/2

 = 91/2 × 21/2

 = 3 × 21/2

This is a product of a natural number and an irrational number. The nonnegative square 
roots of large numbers can often be resolved in this way.

 6.  The number 83 is prime. If we want to factor this into a product of two natural 
numbers and no remainder, the best we can do is 83 × 1. Therefore, we can’t resolve the 
nonnegative square root of 83 into anything simpler than 831/2. We can also tell that it 
is in the most simplified form because it has no factors that are perfect squares.

 7.  The ratio of 501/2 to 21/2 is the same thing as the quotient of these two numbers. Note 
that both 50 and 2 are taken to the same real-number power, that is, 1/2. According to 
the power of quotient rule, then, we have

501/2/21/2 = (50/2)1/2

 = 251/2

 = 5



The ratio of the nonnegative square root of 50 to the nonnegative square root of 2 is 
exactly equal to 5, even though the dividend and the divisor are both irrational.

 8. Here’s the sum-of-quotients rule again:

w /x + y /z = (wz + xy)/(xz)

In this example, we can let w = 7, x = 11, y = −5, and z = 17. None of these are equal to 0, 
so we can be sure the rule will work properly. Now it’s simply a matter of doing the 
arithmetic:

7/11 + (−5/17) = {(7 × 17) + [11 × (−5)]} / (11 × 17)
 = [119 + (−55)] / 187
 = 64 / 187

This can’t be reduced to lower terms because the denominator, 187, is the product of 
two primes, 11 and 17. Neither of these factors “goes into” the numerator, 64, without 
leaving a remainder.

 9.  To solve this, we can rewrite (x − y) as [x + (−y)]. Then, using the product of sums rule, 
we have

(x + y)[x + (−y)] = xx + x (−y) + yx + y (−y)

We can use familiar arithmetic rules to write this as

= x 2 − xy + xy − y 2

The addends −xy and xy cancel out here, so we get the final result

= x 2 − y 2

 10.  Let u, v, w, x, y, and z be real numbers. We’re given a product of sums of three variables, 
and we’re told to multiply it out using the product of sums rule. That rule, as stated in 
the chapter text, only allows us to use two variables in each addend. But we can “cheat” 
by renaming certain sums! Here is the original expression:

(u + v + w)(x + y + z)

Let’s rename (v + w) as r, and (y + z) as s. Then we have

(u + r)(x + s)

Using the product of sums rule, we can multiply this out to

ux + us + rx + rs

Now let’s substitute the original values for r and s back into the expression. This gives us

ux + u(y + z) + (v + w)x + (v + w)(y + z)
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The first addend in this expression is ready to go! We can use the distributive laws on the 
second and third terms to get

ux + uy + uz + vx + wx + (v + w)(y + z)

The final term can be multiplied out using the product of sums rule from the chapter 
text. This gives us

ux + uy + uz + vx + wx + vy + vz + wy + wz

We can use the commutative law of addition, in its generalized form, to rearrange these 
terms so the whole sum is easier to remember:

ux + uy + uz + vx + vy + vz + wx + wy + wz



These worked-out solutions do not necessarily represent the only way a problem can be fig-
ured out. If you think you can solve a particular problem in a quicker or better way than you 
see here, by all means go ahead! But always check your work to be sure your “alternative” 
answer is correct.

Chapter 11
 1.  We can take a brute-force approach and multiply all the denominators together, getting 

2 × 4 × 6 = 48, and then multiply the entire equation through by that number. We get:

(7/2) × 48 = (14/4) × 48 = (21/6) × 48

which simplifies to

168 = 168 = 168

 A more elegant way (at least in this situation) is to multiply the original equation through 
by 2, getting

14/2 = 28/4 = 42/6

Then, dividing the fractions out, we get

7 = 7 = 7

 2.  We can do the same thing as we did in the previous solution, and then multiply the 
three-way equations through by −1, getting

−168 = −168 = −168
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or

−7 = −7 = −7

 3.  If we multiply an equation through by the number 0, we will always get a statement 
to the effect that 0 equals itself. That’s true, but it’s trivial and isn’t good for much of 
anything. We might multiply an equation through by a variable or expression that’s 
equal to 0, even though we aren’t aware of it at the time. That’s likely to make the 
equation more complicated, but it won’t make it false. Consider this:

x = 2

Let’s multiply this through by (2 − x). We get

x (2 − x) = 2(2 − x)

which expands to

2x − x 2 = 4 − 2x

 In this case, our manipulation does us no good. But it does no real harm either, as the 
inadvertent division by 0 can do. Occasionally, a manipulation like this can put a compli-
cated equation into a form that’s easier to work with.

 4.  Let’s call the set of negative integers Z−. Remember the standard name for the set of 
natural numbers; it’s N. We have

Z− = {..., −5, −4, −3, −2, −1}

and

N = {0, 1, 2, 3, 4, 5, ...}

 From these statements, we can see that any negative integer we choose will be smaller than 
any natural number we choose. Therefore, if x is an element of Z− and y is an element of N,
x is smaller than y. In logical form along with set notation, we can write this as

[(x ∈ Z−) & (y ∈ N )] ⇒ x < y

 5.  Let’s call the set of nonpositive reals R0− (for “0 and all the negative reals”) and the set 
of nonnegative reals R0+ (for “0 and all the positive reals”). Both of these sets include 
0, but that’s the only element they share. Therefore, any nonpositive real number we 
choose must be smaller than or equal to any nonnegative real number we choose. In 
other words, if x is an element of R0− and y is an element of R0+, then x is smaller than 
or equal to y. In logical form along with set notation, we can write this as

[(x ∈ R0−) & (y ∈ R0+)] ⇒ x ≤ y
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 6.  We have standard names for the sets of rational and irrational numbers: Q and S,
respectively. These sets are disjoint; they have no elements in common. If x is an 
element of Q and y is an element of S, then x is never equal to y. In logical form along 
with set notation, we can write

[(x ∈ Q) & (y ∈ S )] ⇒ x ≠ y

 7.  We can write the statement as “mathematical verse” by reading it out loud and taking 
careful note of each symbol. Here’s the logical statement again, for reference.

(∀ a, b, c) : [(a ≥ b) & (b ≤ c)] ⇒  (a = c)

 When we break up the statement into parts and write them down on separate lines, we 
come up with the following:

For all a, b, and c :
If

a is larger than or equal to b,
and

b is smaller than or equal to c,
then

a is equal to c.

 This little poem might be cute, but it doesn’t state a valid mathematical law. Suppose that 
a = 5, b = 3, and c = 7. In that case, a is larger than or equal to b and b is smaller than or 
equal to c. However, a is not equal to c.

 8.  Our task is to simplify the equation to a form where x appears all by itself on the left 
side of the equality symbol, and a plain numeral appears all by itself on the right. Here’s 
the equation again, for reference:

x + 4 = 2x

We can subtract x from both sides, getting

x + 4 − x = 2x − x

which simplifies to

4 = x

We can reverse the order to get the solution in its proper form:

x = 4

The original equation holds true only when x is equal to 4.
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 9.  We must simplify the inequality so that y appears all by itself on the left side of the 
“not equal” symbol, and a plain numeral appears all by itself on the right. Here’s the 
inequality again, for reference:

y /2 ≠ 4y + 7

First, let’s multiply through by 2. That gives us

(y /2) × 2 ≠ (4y + 7) × 2

which multiplies out to

y ≠ 8y + 14

Now, let’s subtract 8y from each side. That gives us

y − 8y ≠ 8y + 14 − 8y

which simplifies to

−7y ≠ 14

We can divide this through by −7 to get

(−7y)/(−7) ≠ 14/(−7)

which simplifies to

y ≠ −2

The original inequality holds true for all values of y except −2.

 10.  We must simplify the inequality so that z appears all by itself on the left side of the 
“smaller than or equal” symbol, and a plain numeral appears all by itself on the right. 
Here’s the inequality again, for reference:

z /(−3) ≤ 6z + 6

 Let’s multiply through by −3, remembering that we must reverse the sense of the inequal-
ity whenever we multiply through by a negative. That gives us

[z /(−3)] × (−3) ≥ (6z + 6) × (−3)

which simplifies to

z ≥ −18z − 18



If we add 18z to each side, we get

z + 18z ≥ −18z − 18 + 18z

which simplifies to

19z ≥ −18

We finish by dividing each side by 19. That leaves us with

z ≥ −18/19

The original inequality holds true for all values of z larger than or equal to −18/19.

Chapter 12
 1. See Table B-1.

 2. See Table B-2.

 3. See Table B-3.

Table B-2. Solution to Prob. 2 in Chap. 12.

Statements                        Reasons

x/3 = 6x + 2 This is the equation we are given
x = 3(6x + 2) Multiply through by 3
x = 18x + 6 Distributive law applied to the right side
−17x = 6 Subtract 18x from each side
−17x − 6 = 0 Subtract 6 from each side
17x + 6 = 0  Multiply through by −1 and apply 

  the distributive law to the right side, 
obtaining a more elegant equation
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Table B-1.  Solution to Prob. 1 in Chap. 12.

Statements                                               Reasons

4x + 4 = 2x − 2 This is the equation we are given
2x + 4 = −2 Subtract 2x from each side
2x + 6 = 0 Add 2 to each side
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 4. We are given the equation

x /3 + x /6 = 12

Multiplying through by 6, we get

6(x/3 + x /6) = 72

When we apply the distributive law to the left side and then simplify the addends, we obtain

2x + x = 72

Simplifying the left side further, we get

3x = 72

Subtracting 72 from each side yields

3x − 72 = 0

 Finally, we can divide through by 3 to obtain lowest terms:

x − 24 = 0

 5.  When we have a first-degree equation in standard form, the solution process never takes 
more than two steps. Let’s solve the results of Probs. 1 through 4

  For Prob. 1 (Table B-1). The standard-form equation we got was

2x + 6 = 0

  We subtract 6 from each side, getting

2x = −6

Table B-3. Solution to Prob. 3 in Chap. 12. 

Statements                         Reasons

x − 7 = 7x + x /7 This is the equation we are given
7(x − 7) = 7(7x + x /7) Multiply through by 7
7x − 49 = 49x + x Apply distributive law to each side
7x − 49 = 50x Simplify the right side
−43x − 49 = 0 Subtract 50x from each side
43x + 49 = 0  Multiply through by −1 and apply 

  the distributive law to the right side, 
obtaining a more elegant equation



  Then we divide through by 2, getting

x = −3

  For Prob. 2 (Table B-2). The standard-form equation we got was

17x + 6 = 0

  We subtract 6 from each side, getting

17x = −6

  Then we divide through by 17, getting

x = −6/17

  For Prob. 3 (Table B-3). The standard-form equation we got was

43x + 49 = 0

  We subtract 49 from each side, getting

43x = −49

  Then we divide through by 43, getting

x = −49/43

  For Prob. 4. The standard-form equation we got was

x − 24 = 0

  We add 24 to each side, getting

x = 24

   In this case, we need not multiply or divide through by anything, because x is already 
by itself on the left side of the equation.

 6. If we call the unknown number x, then we have the following equation to solve:

(2x + 8)/4 = −1
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Multiplying through by 4, we get

2x + 8 = −4

Subtracting 8 from each side gives us

2x = −12

Dividing through by 2 produces

x = −6

 7. If we call the unknown number x, then we have the following equation to solve:

(x − x /10)/2 = 135

Multiplying through by 2 gives us

x − x /10 = 270

Note that x − x/10 is the same as x − (1/10)x, or (9/10)x. So we have

(9/10)x = 270

Multiplying through by 10/9 gives us

(10/9)(9/10)x = 10/9 × 270

which simplifies to

x = 300

 8.  Let’s call Bonnie’s weight, in kilograms (kg), the unknown x. Then Bruce’s weight in 
kilograms is x + 5, and Bill’s weight in kilograms is (x + 5) + 10, or x + 15. The total 
weight is 200 kg. We can now write the equation

x + (x + 5) + (x + 15) = 200

Applying the commutative law and adding the constants on the left side gives us

x + x + x + 20 = 200

which simplifies to

3x + 20 = 200



Subtracting 20 from each side gives us

3x = 180

Dividing through by 3, we get

x = 60

 That means Bonnie weighs 60 kg. Bruce weighs 5 kg more than Bonnie, or 65 kg. Bill 
weighs 10 kg more than Bruce, or 75 kg. 

 9.  We can work through this without resorting to equations. It’s first-degree algebra in a 
single variable, but we don’t have to express it symbolically! Let’s start by figuring out 
the land speed of the boat as it traveled upstream. The distance from our cabin to our 
cousin’s cabin is 18 miles (mi), and it took 1 h 12 min for the boat to travel that far. 
Because 12 min = 1/5 h, the trip took 6/5 h. The speed of the boat relative to the land 
was therefore 18 mi per 6/5 h, or

18/(6/5) = 18 × 5/6
 = 15 mi/h

 If there were no current, the boat would have traveled at 18 mi/h relative to the water and 
relative to the land. The water speed was indeed 18 mi/h, but the land speed was only 
15 mi/h. The current slowed our boat down by 18 − 15, or 3 mi/h. The river must there-
fore have been flowing at 3 mi/h.

 10.  When we go downstream, the river current will add 3 mi/h to our boat’s land speed. 
Again, if there were no current, the land and water speeds would both be 18 mi/h. That 
means the downstream speed of the boat will be 18 + 3, or 21 mi/h. We must travel 
a land distance of 18 mi. Time equals distance divided by speed. Therefore, if we let t
represent the time in hours, we have

t = 18/21
 = 6/7 h

Because 1 h = 60 min, 6/7 hour = 6/7 × 60 min, or, approximately, 51.43 min.

Chapter 13
 1.  For every boy there is exactly one girl dance partner and vice-versa, so the mapping is an 

injection. It’s also onto the entire set of girls. No girl has to sit out the dance without a 
partner, so it’s a surjection. Any mapping that’s both an injection and a surjection is, by 
definition, a bijection.

 2.  This mapping is not one-to-one, so it’s not an injection. That means it can’t be a 
bijection. However, it’s a surjection, because it’s onto the entire set of girls.
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 3.  This mapping, like the one in the Prob. 2, is not one-to-one, so it can’t be an injection 
or a bijection. But it’s a surjection, because it’s onto the entire set of boys.

 4.  Our mapping was not an injection, because it was not one-to-one. If it wasn’t an 
injection, it couldn’t have been a bijection. It was a surjection from A to B, because 
we mapped our message onto the entire set B, the set of all 175,000 subscribers to 
Internet Network Beta. The maximal domain was A, the set of all 60,000 subscribers to 
Internet Network Alpha (before we were kicked out). The essential domain was the set 
containing only you and me. The co-domain and the range were both the whole set B.

 5.  This relation is one-to-one. For every integer q, there is exactly one even integer r, which 
we can get by doubling q. Conversely, for every even integer r, there is exactly one 
integer q, which we get when we divide y by 2. Our relation is therefore an injection 
from Q to R. It is not onto R, however, because there are plenty of real numbers that are 
not even integers. That means we do not have a surjection from Q onto R. If it’s not a 
surjection, then it can’t be a bijection.

 6.  This relation is not one-to-one. For example, q = 3/7 and q = 3/11 both map into z = 3. 
That means it’s not an injection, so it cannot be a bijection, either. It is a surjection, 
because it’s onto the entire set Z of integers. We can choose any integer z, place it into 
the numerator of a fraction, choose a denominator such that the fraction is in lowest 
terms, and have a rational number q that maps to z.

 7.  This relation is not quite one-to-one. For every nonzero integer z, there is exactly one 
rational number q = 1/z. But if z = 0, there is no q such that q = 1/z. The relation 
is therefore not injective nor bijective. It is not surjective, either. There are plenty of 
rational numbers that are not reciprocals of integers; 3/7 is an example.

 8.  This relation is one-to-one. We “patched the hole” in the relation defined in Prob. 7. 
We declared that if z = 0, then q = 0. There is no nonzero integer z such that 1/z = 0, 
so we don’t get a “dupe” by making this declaration. We have an injective relation now! 
But as with the relation in Prob. 7, we do not have a surjection. That means the relation 
is not bijective.

 9.  This relation is a function. For any value of x we choose, there is exactly one value of y
such that y = x4. It’s not one-to-one between the set of reals and the set of nonnegative 
reals, but two-to-one except when x = 0. That means the function is not injective, so 
it can’t be bijective, either. It’s surjective, because it’s onto the entire set of nonnegative 
reals. For any nonnegative real number y, we can find a real number x such that y = x4.

 10.  When we transpose the values of the independent and dependent variables while 
leaving their names the same, we get

x = y4

which is equivalent to

y = ±(x1/4)

 The plus-or-minus symbol indicates that for every nonzero x, there are two values of y,
one positive and the other negative. This relation is one-to-two except when x = 0, so it 



is not a function. It is not an injection because it’s not one-to-one. That means it cannot be a 
bijection. The relation does map onto its entire range (the set of all reals), so it’s a surjection.

Chapter 14
 1.  If we multiply x by −1 and leave y the same, the point will move to the other side of the 

y axis, but it will stay on the same side of the x axis. If it starts out in the first quadrant, 
it will move to the second. If it starts out in the second quadrant, it will move to the 
first. If it starts out in the third quadrant, it will move to the fourth. If it starts out in 
the fourth quadrant, it will move to the third. The y axis will act as a “point reflector.”

 2.  If we multiply y by −1 and leave x the same, the point will move to the other side of the 
x axis, but it will stay on the same side of the y axis. If it starts out in the first quadrant, 
it will move to the fourth. If it starts out in the second quadrant, it will move to the 
third. If it starts out in the third quadrant, it will move to the second. If it starts out in 
the fourth quadrant, it will move to the first. The x axis will act as a “point reflector.”

 3.  The point for (6x, 6y) will be in the same quadrant as the point for (x, y), but 6 times 
as far from the origin. The point for (x/4, y/4) will be in the same quadrant as the point 
for (x, y), but 1/4 of the distance from the origin. The origin, the point for (x, y), the 
point for (6x, 6y), and the point for (x/4, y/4) will all lie along a single straight line. 

 4.  If the vertical test line intersects the graph (once for a function, and once or more 
for a relation), then the point where the test line intersects the independent-variable 
(horizontal) axis represents a numerical value in the domain. If the test line does not 
intersect the graph, then the point where the test line intersects the horizontal axis does 
not represent a value in the domain.

 5.  This process works just like the process for determining whether or not a point is in the 
domain, except that everything is rotated by 90°! If the horizontal test line intersects the 
graph, then the point where the test line intersects the dependent-variable (vertical) axis 
represents a numerical value in the range. If the test line does not intersect the graph, 
then the point where the test line intersects the vertical axis does not represent a value 
in the range.

 6.  We can plot several specific points for y = |x |, and then we can determine the graph on 
the basis of those points. We can deduce, using some common sense, that the lines are 
straight. See Fig. B-1. The vertical-line test tells us that this is a function of x.

 7.  We can plot several specific points for y = |x + 1|, and then we can determine the graph 
on that basis. Again, we can deduce, using some common sense, that the lines are 
straight. See Fig. B-2. The vertical-line test reveals that this is a function of x.

 8.  Figure B-3 is a graph of the inverse of y = x + 1. If we apply the “point reflector” 
method to Fig. 14-11, we don’t have to mathematically derive an equation for the 
inverse to figure out what its graph looks like.

 9.  Figure B-4 is a graph of the inverse of w = v2. This is the result of using the “point 
reflector” scheme to modify Fig. 14-12. Again, it is not necessary to derive an equation 
for the inverse.
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Figure B-1  Illustration for the solution to Prob. 6 in 
Chap. 14.
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Figure B-2  Illustration for the solution to Prob. 7 in Chap. 14.
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Figure B-3  Illustration for the solution to Prob. 8 in 
Chap. 14.
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Figure B-4  Illustration for the solution to Prob. 9 in 
Chap. 14.
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 10.  When the scale increments in a graph are not the same (as is the case in Fig. 14-13), we 
cannot use the “point reflector” scheme directly to see what the inverse graph looks like. 
It’s better to derive an equation for the inverse relation, and then plot its graph on the 
basis of that equation. We want to derive the inverse of u = t 3. We begin by transposing 
the values of the variables without changing their names, getting

t = u 3

 We can take the cube root of both sides of the equation here, and we don’t run any risk 
of ambiguity. That’s because the original function is a bijection. Remember what that 
means: Every value in the domain has exactly one “mate” in the range, and vice-versa. 
There’s no chance for confusion or duplicity as there would be if we were dealing with an 
even-numbered power of u. When we take the cube root of both sides, we get

±t1/3 = u

Reversing the sense gives us

u = ±t1/3

 This is the inverse of u = t 3. Figure B-5 is a graph of this relation. Note that the incre-
ments of the scales have been transposed, as well as the points in the graph, so the graph 
will fit neatly into the available space.

2

4

6

–6

20 40 60–40

t

u

(64,4)

(27,3)

(8,2)

(0,0)

(–8,–2)

(–27,–3)
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Figure B-5  Illustration for the solution to Prob. 10 
in Chap. 14.



Chapter 15
 1. We have these two ordered pairs defining the points P and Q, respectively:

P = (u1, v1) = (−1, −6)

and

Q = (u2, v2) = (2, 2)

 The slope m is equal to the difference in the dependent-variable coordinates divided by 
the difference in the independent-variable coordinates, or Δv/Δu. If we move along the 
line from P to Q, we find the slope on the basis of the ratio between the differences in the 
point values with the “destination” values listed first:

m = (v2 − v1) / (u2 − u1)

Plugging in the values v2 = 2, v1 = −6, u2 = 2, and u1 = −1, we get

m = [2 − (−6)] / [2 − (−1)]
 = (2 + 6) / (2 + 1)
 = 8/3

 2.  We still have the same two points, defined by the same two ordered pairs. Points P and Q,
respectively, are still defined by

P = (u1, v1) = (−1, −6)

and

Q = (u2, v2) = (2, 2)

 If we want to go from Q to P rather than from P to Q, we must reverse the order of v1 and 
v2 in the numerator of the slope equation, and we must also reverse the order of u1 and u2

in the denominator. When we do that, we get

m = (v1 − v2) / (u1 − u2)
 = (−6 − 2) / (−1 − 2)
 = −8 / (−3)
 = 8/3

 The slope in either direction is equal to the difference in the v values divided by the differ-
ence in the u values, or Δv/Δu. Reversing the direction in which we move along the line 
simply multiplies both Δv and Δu by −1. The ratio turns out the same either way.
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 3.  We know the coordinates of at least one point (two, actually) and we also know the 
slope. Let’s use the point (2, 2) as the starting basis. We’ve determined that the slope 
is 8/3. The general PS equation, using u and v as the variable names rather than the 
familiar x and y, is

v − v0 = m(u − u0)

Plugging in 2 for v0, 8/3 for m, and 2 for u0, we have

v − 2 = (8/3)(u − 2)

That’s the PS form of the equation.

 4.  To get the equation in SI form, we can manipulate the PS equation we obtained in the 
previous solution. That equation, again, is

v − 2 = (8/3)(u − 2)

Using the distributive law for multiplication over subtraction on the right-hand side, we obtain

v − 2 = (8/3)u − 16/3

Adding 2 to the left side, and adding 6/3 (which is equal to 2) to the right side, we get

v = (8/3)u − 16/3 + 6/3

which simplifies to

v = (8/3)u − 10/3

That’s the SI form of the equation.

 5.  The simplest possible way to graph this equation is to plot the two points we were 
originally given, and then draw a straight line through them. This is done in Fig. B-6. 
The slope, m, is 8/3 as we derived it. The v-intercept, b, is −10/3 as we derived it.

 6.  The first equation is in SI form. We can tell, by looking at this equation, that the slope 
of the line will be 1 when we graph it. The second equation can be put into SI form by 
considering the subtraction of s as the addition of its negative, getting

t = 5 + (−s)

We can apply the commutative law on the right side to get

t = −s + 5

Now we can see that the slope of this line will be −1 when we graph it.
  In a Cartesian plane where both axes are graduated in increments of the same size, a 
slope of 1 corresponds to a ramp angle of 45°, and a slope of −1 corresponds to a ramp 



angle of −45°. That means the first line will go “uphill” at 45° as we go to the right, and 
the second line will go “downhill” at 45° as we go to the right. The angle between the two 
lines will therefore be 45 + 45, or 90°.
  If the increments on the s axis are not the same size as those on the t axis, then slopes of 
1 and −1 will not appear as “uphill” and “downhill” 45° angles. Depending on which axis 
has the larger increments, both lines will be either steeper or less steep. Our advisor, who 
claimed that the lines would intersect at a 90° angle, will be mistaken if we draw the lines 
on a coordinate system having axes graduated in unequal increments.

 7.  To determine the point where the two lines intersect, we must find an ordered pair of 
the form (s, t) that satisfies both equations. Look at the SI forms of the two equations 
again:

t = s + 5

and

t = −s + 5

 If we add the left sides of these equations, we get t + t, which is equal to 2t. If we add the 
right sides, we get s + 5 + (−s) + 5, which is equal to 10. That means the sum of the two 
equations is

2t = 10

2 4 6–6

4

6

–4

–6

–4 –2

m = 8/3

2

P = (–1,–6)

Q = (2,2)

b = –10/3

(0,–10/3)

u

v

Figure B-6  Illustration for the solution to Prob. 5 in 
Chap. 15.
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 Dividing through by 2, we get t = 5. That’s the t value of the intersection point. We can plug 
5 in for t in either of the original equations to solve for s. Let’s use the first one. We then get

5 = s + 5

 It’s not too difficult to tell from this equation that s = 0. Now we know that s = 0 and 
t = 5, so (s, t) = (0, 5) defines the point where the two lines intersect. That point lies on 
the t axis, because the s coordinate is equal to 0.

 8.  Figure B-7 shows the graphs of the two lines, based on their known slopes and 
t-intercepts. The intersection point is, coincidentally, at the t-intercept for both lines. 
The lines intersect at a 90° angle because the axes are graduated in equal increments.

 9.  For reference, here’s the general two-point equation we derived for a line in Cartesian 
coordinates:

y − y1 = (x − x1)(y2 − y1) / (x2 − x1)

 where points are represented by ordered pairs (x1, y1) and (x2, y2). We are told that (2, 8) 
and (0, −4) both lie on the graph. Let’s assign x1 = 2, x2 = 0, y1 = 8, and y2 = −4. When 
we plug these numbers into the above equation, we get

y − 8 = (x − 2)(−4 − 8) / (0 − 2)

s

t

t = s + 5

t = –s + 5

Intersection
point = (0,5)

10

15

–5

–10

–15

–5–10–15 5 10 15

Figure B-7  Illustration for the solution to Prob. 8 in 
Chap. 15.



which simplifies to

y − 8 = (x − 2) × (−12) / (−2)

and further to

y − 8 = 6(x − 2)

That’s the PS form of the equation.

 10. Once again, here’s the general two-point equation:

y − y1 = (x − x1)(y2 − y1) / (x2 − x1)

 This time, we’re told that (−6, −10) and (6, −12) lie on the graph. Let’s assign x1 = −6,
x2 = 6, y1 = −10, and y2 = −12. When we plug in these numbers, we get

y − (−10) = [x − (−6)][−12 − (−10)] / [6 − (−6)]

This “nightmare of negatives” simplifies to

y + 10 = (x + 6) × (−2) / 12

and further to

y + 10 = (−1/6)(x + 6)

 We want the SI form, so we have a little more manipulation to do. Applying the distribu-
tive law of multiplication over addition to the right side, we get

y + 10 = (−1/6)x − 1

Subtracting 10 from each side produces the desired result:

y = (−1/6)x − 11

That’s the SI form of the equation.

Chapter 16
 1. Let’s call the numbers x and y. We’re told that both of the following facts are true:

x + y = 44

and

x − y = 10
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 Let’s get the equations into SI form. In the first equation, we can subtract x from each 
side to get

y = −x + 44

 In the second equation, we can subtract x from each side and then multiply through by 
−1 to obtain

y = x − 10

Mixing the right sides of these two SI equations produces this:

−x + 44 = x − 10

Adding 10 to each side gives us

−x + 54 = x

Adding x to each side, we get

54 = 2x

 Dividing through by 2, we determine that x = 27. We can plug this into either of the SI 
equations to solve for y. Let’s use the second one. We have

y = x − 10
 = 27 − 10
 = 17

The two numbers are 27 and 17.

 2. Again, let’s call the numbers x and y. We are told that these two facts are true:

x + y = 100

and

y = 6x

 Actually, we could just as well say that x = 6y; it doesn’t matter. Let’s stick with the equations 
above. The first equation can be put into SI form by subtracting x from each side. That gives us

y = −x + 100

 The second equation is already in SI form (the y-intercept is 0). Mixing the right-hand 
sides, we obtain

−x + 100 = 6x



Adding x to each side produces

100 = 7x

 Dividing through by 7, we find that x = 100/7. We can plug this into the second original 
equation to get

y = 6 × 100/7
 = 600/7

 The two numbers are 100/7 and 600/7. We can also express them in whole-number-and-
fraction form as 14-2/7 and 85-5/7.

 3.  The process for solving this problem is rather long and a little tricky as well! Let x be the 
speed of the ball relative to the car. Let y be the speed of the car relative to the pavement.
  When you throw the first baseball straight out in front of the car, the ball’s speed adds 
to the car’s speed, so the ball moves at a speed of x + y relative to the pavement. That’s 
simple enough! When you throw the second ball straight backward, the ball’s speed sub-
tracts from the car’s speed, so the ball moves at a speed of y − x relative to the pavement.
  When the second ball hits the pavement, it’s moving backward, opposite to the motion 
of the car. Therefore, we must consider the direction of the motions relative to the pave-
ment. Let’s define forward motion relative to the pavement (that is, in the direction of the 
car) as positive speed, and backward motion relative to the pavement (opposite to the car’s 
motion) as negative speed. Keep in mind that these definitions apply only to motions that 
are observed with respect to the pavement.
  The equations describing the movement of the ball relative to the pavement can be 
written out:

x + y = 135

when for the ball you throw straight out in front of the car, and

y − x = −15

 for the ball you throw straight out behind the car. The speed in the second case is negative 
because the ball hits the pavement moving backward. When we morph these two equa-
tions into SI form, we obtain

y = −x + 135

and

y = x − 15

When we mix the right sides, we get

−x + 135 = x − 15
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Adding 15 to each side gives us

−x + 150 = x

Adding x to each side, we get

150 = 2x

 Therefore, x = 150/2 = 75 mi/h. That’s the speed of each ball relative to the car. (You have 
a pretty good throwing arm, considering you’re sitting in a car seat and throwing balls out 
of an open window!) When we plug this value for x into the second SI equation, we get

y = x − 15
 = 75 − 15
 = 60

 That means the car is moving at 60 mi/h relative to the pavement—in a forward direc-
tion, of course.

 4.  Let’s call the numbers x and y. We are told that both of the following facts are true:

x + y = −83

and

x − y = 13

 These equations are in the same form, so we’re ready to go. We can multiply the first 
equation through by −1, getting

−x − y = 83

We add this to the second original equation:

−x − y = 83
 x − y = 13

⎯⎯⎯⎯⎯
 −2y = 96

This tells us that y = 96/(−2) = −48. Now let’s add the two original equations directly:

x + y = −83
 x − y = 13

⎯⎯⎯⎯⎯
2x = −70

This tells us that x = −70/2 = −35.



 5.  Let’s state the two equations again for reference, and then try to solve them using 
double elimination:

2x + y = 3

and

6x + 3y = 12

Let’s eliminate x. We can multiply the first equation through by −3 to get

−6x − 3y = −9

Here’s what happens when we add this to the second original equation: 

−6x − 3y = −9
 6x + 3y = 12
⎯⎯⎯⎯⎯
         0 = 3

 That’s nonsense! No matter what other method we use in an attempt to solve this system, 
we’ll arrive at some sort of contradiction. When this happens with a two-by-two linear 
system, the system is said to be inconsistent. (Most two-by-two linear systems are consis-
tent, meaning that they have a single solution that can be expressed as an ordered pair.) 
Nothing is technically wrong with either equation here. They simply don’t get along 
together. Inconsistent linear systems have no solutions.

 6.  Let’s put the two equations from Prob. 5 into SI form, and see if that tells us anything 
about what their graphs look like. First, this:

2x + y = 3

When we subtract 2x from each side, we get

y = −2x + 3

 This indicates that the slope of the graph, which is a straight line, is −2. The y-intercept 
is 3. Now for the second equation:

6x + 3y = 12

When we subtract 6x from each side, we get

3y = −6x + 12

We can divide through by 3 to obtain

y = −2x + 4
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 The slope of this graph is −2, the same as the slope of the graph of the other equation. 
But the y-intercept is 4, and that’s different. If we plot the graphs, we get two parallel 
lines. On the Cartesian plane, two lines have the same slope but different y-intercepts if 
and only if they’re parallel. Now remember from plane geometry: parallel lines do not 
intersect. That means they have no point in common. When two parallel lines appear on 
the Cartesian plane, no ordered pair (x,y) can give us a point that falls on both lines, so 
no ordered pair (x,y) can satisfy both equations.

 7.  Let’s put the two equations from Probs. 5 and 6 into the format we used to solve the 
challenge in the section “Double Elimination.” Here again are those general equations:

ax + by = c

and

dx + ey = f

 where x and y are the variables, and a through f are constants. Here are the two equations 
from Probs. 5 and 6 that we could not solve as a linear system:

2x + y = 3

and

6x + 3y = 12

We have a = 2, b = 1, d = 6, and e = 3. Therefore,

ae = 2 × 3
 = 6

and

bd = 1 × 6
 = 6

 Now remember that in the general derivation, we were not allowed to let ae = bd, because 
that would cause us to divide by 0 in the course of trying to solve the system. You’ve 
already seen some of the bad things that can happen when we divide by 0 directly or 
indirectly, knowingly or unknowingly. Let this serve as another example!

 8.  Let’s call the numbers x and y, as we did in Prob. 1. The substitution process is similar 
to the morph-and-mix process, at least for this system. Here are the equations again:

x + y = 44

and

x − y = 10



In the first equation, we can subtract x from each side to get

y = −x + 44

We can substitute the quantity (−x + 44) for y in the second original equation, getting

x − (−x + 44) = 10

This can be rewritten as

x + [−1(−x + 44)] = 10

and simplified to

x + x − 44 = 10

When we add 44 to each side and note that x + x = 2x, we obtain

2x = 54

 This tells us that x = 27. Now we can plug this into the SI equation and solve for y, as 
follows:

y = −x + 44
 = −27 + 44
 = 17

 When we check back and compare this with solution to Prob. 1, we see that the answers 
are the same: x = 27 and y = 17.

 9.  Let’s call the numbers x and y, as we did in Prob. 4. Here again are the equations that 
we must solve as a two-by-two linear system:

x + y = −83

and

x − y = 13

The first equation can be put into SI form if we subtract x from each side. That gives us

y = −x − 83

When we substitute (−x − 83) for y in the second equation, we get

x − (−x − 83) = 13

This can be rewritten as

x + [−1(−x − 83)] = 13

Chapter 16  643



644  Worked-Out Solutions to Exercises: Chapters 11 to 19

and simplified to

x + x + 83 = 13

When we subtract 83 from each side and note that x + x = 2x, we get

2x = −70

 Therefore, x = −70/2 = −35. We can replace x with −35 in the SI equation above to solve 
for y, getting

y = −x − 83
 = −(−35) − 83
 = 35 − 83
 = −48

 When we check back and compare this with solution to Prob.4, we see that the answers 
are the same: x = −35 and y = −48.

 10. Here are the equations again, for reference:

s = 2r − 3

and

−10r + 5s + 15 = 0

 This pair of equations appears well suited to a solution by substitution. The first equation 
gives us s directly in terms of r. Let’s replace s by (2r − 3) in the second equation. We get

−10r + 5(2r − 3) + 15 = 0

The distributive law allows us to morph the left side of this equation into a straight sum:

−10r + 10r − 15 + 15 = 0

which simplifies to

0 = 0

 This statement is true, so we can’t claim a contradiction. But it’s useless for solving this system. 
(If we try any other method to solve it, we’ll encounter a similar barrier.) The trouble becomes 
clear if we solve the second original equation for s directly in terms of r. We start with

−10r + 5s + 15 = 0



Subtracting 15 from each side gives us

−10r + 5s = −15

When we add 10r to each side, we get

5s = 10r − 15

Finally, we can divide through by 5, obtaining

s = 2r − 3

 That’s identical to the first original equation! There are infinitely many solutions here; an 
infinite number of ordered pairs (r,s) will make the equation true. When a linear system 
consists of two equations that look different but can both be morphed to get a single 
equation, the system is said to be redundant. Some texts use the word dependent instead. 
A redundant linear system always has infinitely many solutions.

Chapter 17
 1.  In Fig. 17-9, line L passes through the points (−3, 0) and (0, 4). The y-intercept is equal 

to 4. We can travel along L from (−3, 0) to (0, 4) if we move to the right by Δx = 3 
units and upward by Δy = 4 units. The slope is therefore

m = Δy/Δx
= 4/3

Now that we know the slope and the y-intercept for line L, we can write its SI equation as

y = (4/3)x + 4

 2.  In Fig. 17-9, line M passes through (−3, 0) and (0, −2). The y-intercept is −2. We can 
travel from (−3, 0) to (0, −2) if we move along the line to the right by Δx = 3 units and 
upward by Δy = −2 units (the equivalent of going downward by 2 units). The slope is 
therefore

m = Δy/Δx
= −2/3

We now have the slope and the y-intercept for M, so we can write its SI equation as

y = (−2/3)x − 2

 3.  We have the equations for lines L and M from Fig. 17-9 in SI form. Together, they 
constitute a two-by-two linear system:

y = (4/3)x + 4
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and

y = (−2/3)x − 2

 There’s no morphing for us to do. So let’s go ahead and mix the right sides of these two 
equations. We get

(4/3)x + 4 = (−2/3)x − 2

We can multiply this equation through by 3 to obtain

4x + 12 = −2x − 6

Adding 2x to each side gives us

6x + 12 = −6

Subtracting 12 from each side, we get

6x = −18

 Dividing through by 6 tells us that x = −18/6 = −3. We can plug this value for x into 
either of the SI equations to solve for y. Let’s use the first equation. We have

y = (4/3)x + 4
 = (4/3) × (−3) + 4
 = −12/3 + 4
 = −4 + 4
 = 0

 Having found the solution x = −3 and y = 0, we can state it as the ordered pair (−3, 0). 
This represents the point where lines L and M intersect in Fig. 17-9. 

 4.   Figure B-8 shows the transformation process, one step at a time, exactly as I did it 
using the rotate and mirror functions in my computer graphics program. At A, we see 
the original graph, identical to Fig. 17-9. At B, the entire coordinate grid, the lines, 
and the points have been rotated counterclockwise, all together, by 90°. Even the label 
characters have been rotated! At C, the graph from B has been mirrored. Even the label 
characters have been reversed! (That looks strange, but it can help us see what is taking 
place.) At D, everything has been relabeled to conform to the new coordinate system. 
The transposed lines are called L* and M *. The numbers in the ordered pairs have been 
transposed, because y is now the independent variable and x is the dependent variable.

 5.  In part D of Fig. B-8, line L* passes through (0, −3) and (4, 0). The x-intercept 
  is −3. Remember that x is now the dependent variable, so it’s the x intercept, not 

the y-intercept, that concerns us. We can travel along L* from (0, −3) to (4, 0) 



by moving to the right by Δy = 4 units and upward by Δx = 3 units. The slope is 
therefore

m = Δx/Δy
= 3/4

 Remember that the slope of a line is the ratio of a change in the dependent variable to the 
change in the independent variable. That means the slope is now Δx/Δy, not Δy/Δx. We 
have determined the slope and the x-intercept for line L*, so we can write its SI equation as

x = (3/4)y − 3

 6.  In part D of Fig. B-8, line M* passes through (−2, 0) and (0, −3). The x-intercept is −3.
When we go from (−2, 0) to (0, −3), we move to the right by Δy = 2 units and upward 
by Δx = −3 units (the equivalent of downward by 3 units). The slope is therefore

m = Δx/Δy
 = −3/2
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Figure B-8  Illustration for the solutions to Probs. 4 through 7 in 
Chap. 17. (The rotated and reversed characters are 
not typos! The text explains this.)
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Now that we know the slope and the x-intercept for line M*, we can write its SI equation as

x = (−3/2)y − 3

 7.  We have the equations for lines L* and M* from part D of Fig. B-8 in SI form. 
Together, they constitute a two-by-two linear system:

x = (3/4)y − 3

and

x = (−3/2)y − 3

 There’s no morphing to do here; these equations are ready to mix. When we combine the 
right sides, we get

(3/4)y − 3 = (−3/2)y − 3

We can multiply this through by 4 to obtain

3y − 12 = −6y − 12

Adding 12 to each side gives us

3y = −6y

When we add 6y to each side, we get

9y = 0

 Dividing through by 9 tells us that y = 0. We can plug this value for y into either of the SI 
equations to solve for x. Let’s use the first equation. We have

x = (3/4)y − 3
 = (3/4) × 0 − 3
 = 0 − 3
 = −3

 Having found the solution y = 0 and x = −3, we can state it as the ordered pair (0,−3).
This represents the point where lines L* and M* intersect in part D of Fig. B-8. Remem-
ber that this ordered pair is of the form (y,x), not (x,y). That’s because in this situation, 
y is the independent variable and x is the dependent variable. 

 8.  If a linear function has a graph with a slope of 0, then the inverse relation is not 
a function. That’s because the graph of the inverse relation is a line parallel to the 
dependent-variable axis. The domain of that inverse relation is a single number, and 



the range is the entire set of real numbers. That means there is more than one value in the 
range for the single value in the domain, causing the inverse to fail the “function test.”

 9.  Figure B-9 shows graphs of three linear functions whose inverses are relations but not 
functions. We’ve given the original functions the arbitrary names f (x), g(x), and h(x). 
(There are infinitely many other examples, of course.) The equations always take the form

y = 0x + b

 where b is the y-intercept. The slope is always 0, and the y-intercept can be any real num-
ber. In these examples, x is the independent variable and y is the dependent variable. Axis 
increments are not indicated, because it doesn’t matter what they are! When the variables 
are transposed to obtain the inverse relations, the lines become parallel to the dependent-
variable axis. The inverse relations always fail the “function test,” because there is more 
than one value in the range for the single value in the domain.

 10.  Let’s start with the general SI form of a linear equation, as the hint suggests. The 
function can then be stated as

y = mx + b

 with the understanding that y = f (x). We want to morph this into SI form, treating y as 
the independent variable and x as the dependent variable. Let’s begin by subtracting b from 
each side. That gives us

y − b = mx
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Now let’s switch the left and right sides of the equation to get

mx = y − b

 We can divide through by m, provided m ≠ 0, and then use the right-hand distributive 
law of division over subtraction to obtain

x = y/m − b/m

If we want it in strict SI form, we can rewrite it as

x = (1/m)y − b/m

Because x = f −1(y), we have

f −1(y) = (1/m)y − b/m

 The slope of the inverse function is 1/m, and the x-intercept is −b /m. These values have 
meaning only when m ≠ 0. But if m ≠ 0, f −1 is always a function. A straight line with 
defined slope (that is, a nonvertical line) in Cartesian coordinates can never produce more 
than one value of the dependent variable for any single value of the independent variable. 
Draw some sample graphs, and you’ll see why this is true. If you’re really ambitious, you 
might try to formally prove it!

Chapter 18
 1. Stated again for reference, the first and third revised equations are

−4x + 2y − 3z = 5

and

3x + 6y − 7z = 0

We can multiply the top equation through by 7 to get

−28x + 14y − 21z = 35

We can multiply the bottom equation through by −3 to get

−9x − 18y + 21z = 0

When we add these two new equations in their entirety, we obtain the sum

−28x + 14y − 21z = 35
−9x − 18y + 21z = 0

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
           −37x − 4y = 35



 2.  The second and third revised equations we obtained in the section “Eliminate One 
Variable” were

2x − 5y − z = −1

and

3x + 6y − 7z = 0

 The two-variable equation in x and y that we derived from these, as a result of eliminating 
the variable z, was

−11x + 41y = 7

 If we take this equation together with the solution to Prob. 1, we have the two-by-two 
linear system

−37x − 4y = 35

and

−11x + 41y = 7

 3.  First, let’s get rid of x. We can multiply the top equation through by −11 and the 
bottom equation through by 37. When we do these maneuvers and then add the 
resulting equations, we get

407x + 44y = −385
 −407x + 1,517y = 259

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
1,561y = −126

 Dividing through by 1,561 tells us that y = −126 / 1,561, which reduces to −18/223.
Now, let’s get rid of y. We can multiply the top equation through by 41 and the bottom 
equation through by 4. When we do that and then add the results, we get

−1,517x − 164y = 1,435
 −44x + 164y = 28

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 −1,561x = 1,463

 We divide through by −1,561 to get x = 1,463 / (−1,561), which reduces to −209/223.
The solution to this two-by-two linear system is therefore

x = −209/223
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and

y = −18/223

These are the same solutions we obtained in the chapter text.

 4. For reference, here again is the first equation stated in Prob. 1:

−4x + 2y − 3z = 5

 The solutions for x and y can be plugged into this equation, and it can then be solved for 
z in steps, as follows:

−4 × (−209/223) + 2 × (−18/223) − 3z = 5
836/223 − 36/223 − 3z = 5

800/223 − 3z = 5
−3z = 5 − 800/223

−3z = 1,115 / 223 − 800/223
−3z = 315/223

z = (315/223) / (−3)
z = −105/223

This is the same solution we obtained in the chapter text.

 5.  The first and second revised equations we obtained in the section “Eliminate One 
Variable” were

−4x + 2y − 3z = 5

and

2x − 5y − z = −1

 The two-variable equation in x and y that we derived from these, as a result of eliminating 
the variable z, was

−10x + 17y = 8

 If we take this equation together with the solution to Prob. 1, we have the two-by-two 
linear system

−37x − 4y = 35

and

−10x + 17y = 8



 6.  To use the morph-and-mix method, we must get the equations into SI form. We’re told 
to treat x as the dependent variable, so we must isolate x on the left sides of the equals 
signs. The equations morph like this:

−37x − 4y = 35
 −37x = 4y + 35
 x = (−4/37)y − 35/37

and

−10x + 17y = 8
 −10x = −17y + 8
 x = (17/10)y − 8/10

Now we mix the right sides to get

 (−4/37)y − 35/37 = (17/10)y − 8/10

 It will simplify things if we can get a common denominator. Let’s multiply the numera-
tors and denominators on the left side of this equation by 10, and multiply the numera-
tors and denominators on the right side by 37. That gives us

 (−40/370)y − 350/370 = (629/370)y − 296/370

 Multiplying this entire equation through by 370, we obtain an equation without frac-
tions, which we can solve in steps as follows:

−40y − 350 = 629y − 296
 −40y = 629y + 54
 −669y = 54
 y = −54/669
 = −18/223

 This agrees with the solution we obtained in the chapter text. Now we can plug this into 
either of the SI equations we derived earlier. Let’s use the second one. We get

x = (17/10)y − 8/10
 = (17/10) × (−18/223) − 8/10
 = −306 / 2,230 − 8/10
 = −306 / 2,230 − (8 × 223) / (10 × 223)
 = −306 / 2,230 − 1,784 / 2,230
 = −2,090 / 2,230
 = −209/223

This, too, agrees with the result we obtained in the chapter text.
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 7. For reference, here again is the second equation stated in Prob. 1:

2x − 5y − z = −1

 The solutions for x and y can be plugged into this equation, and it can then be solved for 
z in steps, as follows:

2 × (−209/223) + 5 × (−18/223) − z = −1
 −418/223 + 90/223 − z = −1
 −328/223 − z = −1
 −z = −1 + 328/223
 −z = 105/223
 z = −105/223

This is the same solution we obtained in the chapter text.

 8.  All of these equations are in SI form. We know that their graphs must all be straight 
lines, because they are linear equations. All the slopes are different, but all the 
y-intercepts are equal to 1. Therefore, although no two of the lines coincide, all four 
of them pass through the point (0, 1). We can conclude that the system therefore has 
a unique solution: x = 0 and y = 1.

 9.  Let’s go through each equation, plugging in x = 0 and y = 1, and then grinding out the 
arithmetic. Here’s the first equation:

y = −x + 1
 1 = −0 + 1
 1 = 0 + 1
 1 = 1

Check! Now the second equation:

y = −2x + 1
 1 = −2 × 0 + 1
 1 = 0 + 1
 1 = 1

Check! Now the third:

y = 3x + 1
 1 = 3 × 0 + 1
 1 = 0 + 1
 1 = 1



Check! Finally the fourth:

 y = 4x + 1
 1 = 4 × 0 + 1
 1 = 0 + 1
 1 = 1

We can now be confident that the solution to the system is indeed x = 0 and y = 1.

 10.  Figure B-10 shows graphs of all four equations on the Cartesian plane. It’s visually 
apparent that if we choose any pair or triplet of these lines, they intersect at the point 
(0, 1) and nowhere else. Therefore, any pair or triplet of the equations, taken as a two-
by-two or three-by-two linear system, has the unique solution x = 0 and y = 1.

Chapter 19
 1.  Here are the original three equations, stated again for convenience, followed by the 

step-by-step processes that get the equations into form for conversion to a matrix:

x = y − z − 7
 y = 2x + 2z + 2
 z = 3x − 5y + 4

Each axis
increment
is 1 unit

y = –x + 1

y = –2x + 1

y = 3x + 1

y = 4x + 1

x

y

(0,1)

Figure B-10  Illustration for the solution to Prob. 10 
in Chap. 18.
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We morph the first equation as follows:

x = y − z − 7
x − y = −z − 7
x − y + z = −7

Next, the second equation:

y = 2x + 2z + 2
−2x + y = 2z + 2
−2x + y − 2z = 2

Finally, the third:

z = 3x − 5y + 4
−3x + z = −5y + 4
−3x + 5y + z = 4

Now we have this set of equations representing our three-by-three linear system:

x − y + z = −7
−2x + y − 2z = 2
−3x + 5y + z = 4

 2.  Before we write down the matrix, we must be sure we have the correct signs for the 
coefficients. Subtraction of a positive is equivalent to addition of a negative. With that 
in mind, we can “pigeonhole” the coefficients into the matrix form:

1 −1 1 −7

−2 1 −2 2

−3 5 1 4

 3.  It’s easy to convert a matrix into a set of linear equations, but we must pay attention to 
the signs. Here’s the matrix:

0 4 −1 −2

5 −3/2 8 1

1 1 1 1



Here are the equations, derived directly from the coefficients in the matrix:

0x + 4y + (−z) = −2
 5x + (−3/2)y + 8z = 1
 x + y + z = 1

 Here are the equations with the negative additions converted to subtractions, and the 
term 0x eliminated from the first equation for simplicity:

4y − z = −2
5x − (3/2)y + 8z = 1

x + y + z = 1

 4. Here’s the matrix again, for reference:

0 4 −1 −2

5 −3/2 8 1

1 1 1 1

Let’s interchange the first and second rows. Then we get

5 −3/2 8 1

0 4 −1 −2

1 1 1 1

If we multiply the first row by 2 to get rid of the fractional expression, we have

10 −3 16 2

0 4 −1 −2

1 1 1 1

We can multiply the bottom row by −10, getting

10 −3 16 2

0 4 −1 −2

−10 −10 −10 −10

Adding the first row to the third and then replacing the third row with the sum, we obtain

10 −3 16 2

0 4 −1 −2

0 −13 6 −8
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Now let’s multiply the second row by 13 and the third row by 4. That gives us

10 −3 16 2

0 52 −13 −26

0 −52 24 −32

Adding the second row to the third and then replacing the third row with the sum, we get

10 −3 16 2

0 52 −13 −26

0 0 11 −58

This matrix is in echelon form.

 5.  We want to put the matrix from solution to Prob. 4 into diagonal form. We can 
multiply the second row by 11 and the third row by 13 to obtain

10 −3 16 2

0 572 −143 −286

0 0 143 −754

 Adding the second row to the third and then replacing the second row with the sum, 
we get

10 −3 16 2

0 572 0 −1,040

0 0 143 −754

Now let’s multiply the first row by 572 and the second row by 3. That produces

5,720 −1,716 9,152 1,144

0 1,716 0 −3,120

0 0 143 −754

 Adding the first row to the second and then replacing the first row with the sum 
gives us

5,720 0 9,152 −1,976

0 1,716 0 −3,120

0 0 143 −754



 We need to turn the 9,152 in the first row into 0. We’ll have to work with the third row 
to make it happen. Suppose 9,152 divides cleanly by 143? Let’s give it a try. A calculator 
tells us that 9,152 / 143 = 64. Let’s multiply the third row by −64 to get the matrix

5,720 0 9,152 −1,976

0 1,716 0 −3,120

0 0 −9,152 48,256

 Adding the first row to the third and then replacing the first row with the sum, we have

5,720 0 0 46,280

0 1,716 0 −3,120

0 0 −9,152 48,256

This matrix is unwieldy, but it’s in diagonal form.

 6.  We want to get the absolute values of the numbers in solution to Prob. 5 as small as 
possible and still have all integers. That means we must find largest common divisors for 
each row. This process is something like reducing fractions to lowest form. Let’s divide 
the first row by 520, the second row by 156, and the third row by −832. That gives us

11 0 0 89

0 11 0 −20

0 0 11 −58

 That’s as far as we can reduce the matrix, but it’s quite an improvement! This is not a coin-
cidence, even though it may appear that way at first. In the matrix morphing process, we 
did a lot of multiplying. Those multiples “went along for the ride,” inflating the numbers. 
They have served their purpose. It’s good to be rid of them.

 7.  To reduce the matrix in solution to Prob. 6 to unit diagonal form, we divide each row 
by 11. That gives us

1 0 0 89/11

0 1 0 −20/11

0 0 1 −58/11

 The solution to the original linear system, stated at the end of solution to Prob. 3, is 
apparently

x = 89/11
 y = −20/11
 z = −58/11
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 8.  Here are the equations from solution to Prob. 3, which we hope we have solved as a 
linear system:

4y − z = −2
5x − (3/2)y + 8z = 1

x + y + z = 1

Let’s check the first equation with the values from the solution to Prob. 7:

4y − z = −2
4 × (−20/11) − (−58/11) = −2

−80/11 + 58/11 = −2
−22/11 = −2

−2 = −2

Checking in the second equation:

5x − (3/2)y + 8z = 1
5 × 89/11 − [(3/2) × (−20/11)] + 8 × (−58/11) = 1

445/11 − (−30/11) − 464/11 = 1
445/11 + 30/11 − 464/11 = 1

11/11 = 1
1 = 1

Checking in the third equation:

x + y + z = 1
89/11 + (−20/11) + (−58/11) = 1

89/11 − 20/11 − 58/11 = 1
11/11 = 1

1 = 1

We can now be confident that the solution to the three-by-three linear system is

x = 89/11
 y = −20/11
 z = −58/11

 9.  Here’s the three-by-three linear system we have been told to describe as a matrix:

x + y + z = 1
x + y + z = 2
x + y + z = 3



These equations are all in ideal form for conversion to the matrix

1 1 1 1

1 1 1 2

1 1 1 3

 Now let’s try to get this into unit diagonal form. The first step along the way is to seek the 
echelon form. We can start by doing one of three things:

• Make the first entry in the second row vanish
• Make the first entry in the third row vanish
• Make the second entry in the third row vanish

 This is easy—too easy! Suppose we want to make the first entry in the third row vanish. 
We can multiply the first row through by −1, getting

−1 −1 −1 −1

1 1 1 2

1 1 1 3

 Adding the first row to the third row and then replacing the third row with the sum gives us

−1 −1 −1 −1

1 1 1 2

0 0 0 2

 That takes care of not only one, but two of the elements we wanted to turn into 0. But 
there’s a problem starting to take shape. We want the third entry in the third row to end 
up as a nonzero element. We won’t be able to do that without making both the first and 
the second elements in that row nonzero as well. We can go further and add the first two 
rows in the above matrix together, replacing the first row with the sum. Then we get

0 0 0 1

1 1 1 2

0 0 0 2

 This in effect states the following three equations:

0x + 0y + 0z = 1
 x + y + z = 2
 0x + 0y + 0z = 2

 There are no real numbers x, y, or z such that, when they are each multiplied by 0, the 
result is 1 or 2. No matter how we approach this problem, we’ll get a statement that, in 
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effect, says that 0 is equal to some nonzero real number. That’s absurd! The reason for this 
“hangup” is that the original three-by-three linear system is inconsistent. If we could draw 
a graph of this system in Cartesian three-space, we’d get three parallel planes, no two of 
which would intersect anywhere.

 10.  Here’s the three-by-three linear system we’ve been told to describe as a matrix:

x + y + z = 1
 2x + 2y + 2z = 2
 3x + 3y + 3z = 3

These equations are all in ideal form for conversion to

1 1 1 1

2 2 2 2

3 3 3 3

Dividing the second row by 2 and the third row by 3, we get

1 1 1 1

1 1 1 1

1 1 1 1

 We won’t be able to make any of these elements vanish without making a whole row van-
ish, giving us the equation

0x + 0y + 0z = 0

which is utterly useless. However, the above matrix tells us that

x + y + z = 1

 An infinite number of ordered triples (x,y,z) satisfy this equation. Our original three-by-
three linear system is actually one equation stated three different ways. It’s redundant, so 
a single solution does not exist.



These worked-out solutions do not necessarily represent the only way a problem can be fig-
ured out. If you think you can solve a particular problem in a quicker or better way than you 
see here, by all means go ahead! But always check your work to be sure your “alternative” 
answer is correct.

Chapter 21
 1.  The 0th power of j is equal to 1. We know that j 2 = −1, so according to the difference 

of powers law,

j0 = j 2−2

 = j 2/j 2

 = −1/(−1)
 = 1

 2.  We determined in this chapter that j 2 = −1, j 4 = 1, j 6 = −1, j 8 = 1, and so on for 
increasing even-integer powers of j. Based on this knowledge, we can use the negative 
powers rule to determine the following facts:

j −2 = 1/(j 2)
 = 1/(−1)
 = −1
 j −4 = 1/(j 4)
 = 1/1
 = 1
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 j −6 = 1/(j6)
  = 1/(−1)
  = −1
 j −8 = 1/(j 8)
 = 1/1
 = 1
 ↓

and so on, forever

 3.  To solve this problem, we need a little intuition. First, let’s apply the difference of 
powers law. Note that

j −1 = j 3−4

 = j3/j 4

We have already determined that j3 = −j and j 4 = 1. Therefore,

j3/j 4 = (−j )/1
 = −j

 We can conclude that j −1 = −j. Now let’s use cross multiplication and see if we get the 
same result. Note that j −1 is the reciprocal of j, or 1/j. If we let this quantity equal an 
unknown z, we can formulate this equation:

1/j = z /1

According to the law of cross multiplication, the above expression is equivalent to

1 × 1 = jz

 which tells us that jz = 1. Let’s make an educated guess as to what z might be. It’s easy 
enough to see that z can’t be equal to 1, −1, or j. How about −j? When we multiply j by −j,
we get

j × (−j) = j × (−1 × j)
 = j × j × (−1)
 = j 2 × (−1)
 = −1 × (−1)
 = 1

 It works! This tells us that z = −j, and therefore that 1/j = −j. We’ve now shown, in two 
different ways, that the reciprocal of the unit imaginary number is the same as its nega-
tive. If you want to use technical language, the additive inverse of j is the same as its 
multiplicative inverse. No real number behaves like that!
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 4.  To figure out the value of j −3 using the difference of powers law, note that

j −3 = j1−4

 = j /j 4

We have determined that j 4 = 1. Therefore,

j /j 4 = j /1
 = j

 We can conclude that j −3 = j. Now let’s determine j −5. Again using the difference of pow-
ers law, we can say that

j −5 = j−1−4

 = j −1/j 4

We have found that j −1 = −j, and also that j 4 = 1. Therefore

j −1/j 4 = (−j )/1
 = −j

 Now we know that j −5 = −j. Finally, let’s figure out the value of j −7. Once again choosing 
numbers and applying the difference of powers law, we can say that

j −7 = j −3−4

 = j −3/j 4

We have found that j−3 = j, and also that j 4 = 1. Therefore

j −3/j 4 = j/1

 = j

 This tells us that j−7 = j. By now, it is apparent that we’ll alternate between −j and j as we 
raise j to ever-decreasing negative odd integer powers of −9, −11, −13, and so on.

 5.  Refer to Table C-1. The four-way cycle of values goes on forever in both directions, that 
is, for positive and negative integer powers of j.

 6. The answers, along with explanations, are as follows.
(a) To find the sum (4 + j5) + (3 − j8), we add the real parts and the imaginary parts 

separately. This gives us

(4 + j5) + (3 − j8) = (4 + 3) + j(5 − 8)
 = 7 + j(−3)
 = 7 − j3
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(b) To find the difference (4 + j5) − (3 − j8), we multiply the second complex number 
through by −1, and then add the real parts and the imaginary parts separately, getting

(4 + j5) − (3 − j8) = (4 + j5) + [−1(3 − j8)]
 = (4 + j5) + (−3 + j8)
 = (4 − 3) + j(5 + 8)
 = 1 + j13

(c) To find the product (4 + j5)(3 − j8), we use the product of sums rule. This gives us

(4 + j5)(3 − j8) = 4 × 3 + 4 × (−j8) + j5 × 3 + j5 × (−j8)
 = 12 + (−j32) + j15 + j × j × (−40)
 = 12 + (−j17) + (−1) × (−40)
 = (12 + 40) + (−j17)
 = 52 − j17

(d) To find the quotient (4 + j5) / (3 − j8), we use the quotient formula from the text. 
If a, b, c, and d are real numbers, and as long as c and d aren’t both equal to 0, then

(a + jb) / (c + jd )
= (ac + bd ) / (c2 + d 2) + j(bc − ad ) / (c2 + d 2)

Table C-1. Solution to Prob. 5 in Chap. 21.

Expression Value

↑ ↑
j 8 1
j 7 −j
j 6 −1
j 5 j
j 4 1
j 3 −j
j 2 −1
j 1 j
j 0 1
j −1 −j
j −2 −1
j −3 j
j −4 1
j −5 −j
j −6 −1
j −7 j
j −8 1
↓ ↓



  If we let a = 4, b = 5, c = 3, and d = −8, then we have

c 2 + d 2 = 32 + (−8)2

 = 9 + 64
 = 73

  and therefore

(4 + j5) / (3 − j8)
= [4 × 3 + 5 × (−8)] / 73 + j{5 × 3 − [4 × (−8)]} / 73

= (12 − 40) / 73 + j(15 + 32) / 73
= −28/73 + j(47/73)

 7.  To find (a + jb) − (a − jb), we multiply the second complex number through by −1, and 
then add the real parts and the imaginary parts separately, getting

(a + jb) − (a − jb) = (a + jb) + [−1(a − jb)]
 = (a + jb) + (−a + jb)
 = a + (−a) + jb + jb
 = j2b

 To find (a − jb) − (a + jb), we again multiply the second complex number through by −1,
and then add the real parts and the imaginary parts separately, getting

(a − jb) − (a + jb) = (a − jb) + [−1(a + jb)]
 = (a − jb) + (−a − jb)
 = a + (−a) + (−jb) + (−jb)
 = −j2b

 Note that in these answers, the numerals 2 are not exponents! We have j times the quan-
tity 2b in the first case, and −j times the quantity 2b in the second case.

 8.  To find (a + jb) / (a − jb), let’s first change the subtraction in the denominator to 
negative addition. That will give us the expression

(a + jb) / [a + j(−b)]

 Now we can use the quotient formula for complex numbers. Let’s state it again for 
reference. If a, b, c, and d are real numbers, and as long as c and d aren’t both equal 
to 0, then

(a + jb) / (c + jd )
= (ac + bd ) / (c 2 + d 2) + j(bc − ad ) / (c2 + d 2)
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Now we can make these substitutions:

• Let a from the formula equal a in our problem
• Let b from the formula equal b in our problem
• Let c from the formula equal a in our problem
• Let d from the formula equal −b in our problem

The signs will be tricky, now! The quotient formula looks like this:

(a + jb) / [a + j(−b)]
= (aa + b × (−b)] / [a2 + (−b)2] + j[ba − a × (−b)] / [a2 + (−b)2]

 For any real number b, (−b)2 = b2. Knowing that, and simplifying the above expression as 
much as possible, we get

(aa + b × (−b)] / [a2 + (−b)2] + j [ba − a × (−b)] / [a2 + (−b)2]
= (a 2 − b2) / (a 2 + b2) + j[2ab / (a2 + b 2)]

 9.  To find (a − jb) / (a + jb), let’s first change the subtraction in the numerator to negative 
addition. That will give us the expression

[a + j(−b)] / (a + jb)

 Now we can again use the quotient formula for complex numbers. This time, let’s make 
these substitutions:

• Let a from the formula equal a in our problem
• Let b from the formula equal −b in our problem
• Let c from the formula equal a in our problem
• Let d from the formula equal b in our problem

 Once again, we must pay close attention to the signs. The quotient formula now looks 
like this:

[a + j(−b)] / (a + jb)
= (aa + (−b) × b] / (a 2 + b 2) + j(−ba − ab) / (a2 + b 2)

Simplifying the above expression as much as possible, we get

(aa + b × (−b)] / [a 2 + (−b)2] + j[ba − a × (−b)] / [a2 + (−b)2]
= (a2 − b 2) / (a2 + b 2) + j[−2ab / (a2 + b 2)]
= (a2 − b2) / (a2 + b2) − j[2ab / (a2 + b 2)]

This is the complex conjugate of the result we got in Prob. 8. 

 10.  If k is a positive real number, then two pure real numbers have absolute values equal 
to k. These numbers are k and −k. Two pure imaginary numbers, jk and −jk, also have 



absolute values equal to k. These are shown as points in Fig. C-1. There are infinitely 
many complex numbers with absolute values equal to k. This fact can be shown in the 
complex-number plane by plotting the set of all points at a distance of k units from the 
origin. This set of points forms a circle with radius k.

Chapter 22
 1.   To multiply out this equation, we must apply the product of sums rule on the left side 

of the equals sign. To keep the signs right, let’s change the subtraction into a negative 
addition before we start multiplying, and then change the negative additions back to 
subtractions when we’re done. Here are the steps:

(−7x − 5)(−2x + 9) = 0
[−7x + (−5)](−2x + 9) = 0

(−7x) × (−2x) + (−7x) × 9 + (−5) × (−2x) + (−5) × 9 = 0
14x 2 + (−63x) + 10x + (−45) = 0

14x 2 + (−53x) + (−45) = 0
14x 2 − 53x − 45 = 0

a

jb

Radius of
circle
= k units

(0,- k)
or
-j

j

k

(0, k)
or
j

j

k

(k,0)
or
k

(-k,0)
or
-k

Figure C-1  Illustration for the solution to Prob. 10 in 
Chap. 21.
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 2.  We’ve been told to factor the following quadratic, and we’ve been assured that the 
coefficients and constants are all integers.

x 2 + 10x + 25 = 0

 Because the coefficient of x 2 is equal to 1, we know that the coefficients of x in both bino-
mials must be equal to 1. That means the factored equation looks like this:

(x + #)(x + #) = 0

 where # represents an integer (not necessarily the same one in each case). The sum of 
these integers is 10, and their product is 25. A good guess will tell us that the numbers are 
both 5. Let’s see what happens if we use those numbers and multiply out:

 (x + 5)(x + 5) = 0
 x 2 + 5x + 5x + 25 = 0
 x 2 + 10x + 25 = 0

That works, so the factored form is

(x + 5)(x + 5) = 0

which can also be written as

(x + 5)2 = 0

 To solve this, we can take the square root of both sides. There is no “plus-or-minus” 
ambiguity. We get

x + 5 = 0

There is only one root here, and it is −5. The solution set is therefore {−5}.

 3.  We want to factor the following quadratic, and we’ve been told that the coefficients and 
constants in the binomials are all integers.

2x 2 + 8x − 10 = 0

 The coefficient of x 2 is equal to 2. Therefore, the general form of the equation in binomial 
factor form will be

(x + #)(2x + #) = 0

 where # represents an integer (not necessarily the same one in each case). The product of 
these unknown integers is −10. If we plug in integers whose product is −10 and multiply 
the resulting products of binomials out, we’ll eventually come up with

(x + 5)(2x − 2) = 0



Multiplying to confirm, we get

(x + 5)(2x − 2) = 0
 2x 2 − 2x + 10x − 10 = 0
 2x 2 + 8x − 10 = 0

The roots are found by solving these two first-degree equations:

x + 5 = 0

and

2x − 2 = 0

 The solution in the first case is easily seen to be x = −5, and in the second case the solu-
tion is x = 1. The roots of the quadratic are −5 and 1. The solution set is {−5, 1}.

 4.  We want to morph the left side of the following quadratic into a product of binomials 
whose coefficients and constants in the binomials are all integers.

12x 2 + 7x − 10 = 0

 In this case, the coefficient of x 2 is equal to 12. That means the general binomial factor 
form will look like one of these:

(x + #)(12x + #) = 0
 (2x + #)(6x + #) = 0
 (4x + #)(3x + #) = 0

 where # represents an integer (not necessarily the same one in each case). The product of these 
unknown integers is −10. As before, we can start plugging in integers whose product is −10, 
multiply the resulting product of binomials out on every attempt, and see what we get. There 
are lots of choices here, and the process could take time. Eventually we’ll come up with

(4x + 5)(3x − 2) = 0

When we multiply this out, we find

 (4x + 5)(3x − 2) = 0
12x 2 + (−8x) + 15x + (−10) = 0

12x 2 + 7x − 10 = 0 

To find the roots, we must solve

4x + 5 = 0
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and

3x − 2 = 0

The solution to the first of these equations is derived like this:

4x + 5 = 0
 4x = −5
 x = −5/4

In the second case, the process is similar:

3x − 2 = 0
 3x = 2
 x = 2/3

The roots of the quadratic are −5/4 and 2/3, and the solution set is {−5/4, 2/3}.

 5.  We want to morph the following quadratic so the left side becomes a product of a 
binomial with itself:

16x 2 − 40x + 25 = 0

 The coefficient of x 2 is equal to 16, and we know it has to be the square of the first term in 
the binomial. That means the first term must be 4x or −4x. The constant in the polyno-
mial is equal to 25, and it must be the square of the constant in the binomial. That means 
the constant in the binomial must be 5 or −5. The coefficient of x in the polynomial is 
negative, telling us that the coefficient and the constant in the binomial must have oppo-
site signs. As things work out, we get

(4x − 5)2 = 0

Checking to be sure this is right, we can multiply it out:

 (4x − 5)(4x − 5) = 0

16x 2 + (−20x) + (−20x) + 25 = 0

16x 2 − 40x + 25 = 0

It works! We can also use

(−4x + 5)2 = 0



 This equation is equivalent to the other one. To show this, we can derive one squared 
binomial from the other:

(4x − 5)2 = (4x − 5)(4x − 5)
 = (−1)2(4x − 5)(4x − 5)
 = (−1)(4x − 5)(−1)(4x − 5)
 = (−4x + 5)(−4x + 5)
 = (−4x + 5)2

 This duplicity occurs with all squared binomials. It simply comes out of the fact that 
(−1)2 = 1.

 6.  To find the root of the quadratic, we can start with either of the binomial factor 
equations we found. Let’s use the first one:

(4x − 5)2 = 0

Taking the square root of both sides, we obtain

4x − 5 = 0

We can add 5 to each side, getting

4x = 5

 Dividing through by 4 gives us the root x = 5/4. The solution set is {5/4}. Let’s plug the 
root into the original quadratic to be sure that it works:

16x 2 − 40x + 25 = 0
16 × (5/4)2 − 40 × (5/4) + 25 = 0

16 × 25/16 − 50 + 25 = 0
25 − 50 + 25 = 0

−25 + 25 = 0
0 = 0

 7.  We want to morph the following quadratic so we can get the left side into a product of 
a binomial with itself.

x 2 + 6x − 7 = 0

We can add 16 to each side to get

x 2 + 6x + 9 = 16

The left side can now be factored into a square of a binomial:

(x + 3)2 = 16
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 8.  Let’s take the square root of both sides of the binomial factor equation from solution to 
Prob. 7, remembering to include both the negative and positive results:

[(x + 3)2]1/2 = ±(161/2)

This simplifies to

x + 3 = ±4

which can be stated as the following pair of first degree equations:

x + 3 = 4  or  x + 3 = −4

 The first of these solves to x = 1, and the second solves to x = −7. The roots of the qua-
dratic are therefore x = 1 or x = −7, so the solution set is {1, −7}. Let’s check these roots 
in the original quadratic. When x = 1, we get

x 2 + 6x − 7 = 0
12 + 6 × 1 − 7 = 0

1 + 6 − 7 = 0
7 − 7 = 0

0 = 0

When x = −7, we get

x 2 + 6x − 7 = 0
(−7)2 + 6 × (−7) − 7 = 0

49 + (−42) − 7 = 0
49 − 42 − 7 = 0

7 − 7 = 0
0 = 0

 9.  To determine how many real roots a quadratic has, we can calculate the discriminant. 
For a quadratic of the form

ax 2 + bx + c = 0

the discriminant is b2 − 4ac. The equation of interest is

−2x 2 + 3x + 35 = 0

Here, a = −2, b = 3, and c = 35. Therefore

b 2 − 4ac = 32 − 4 × (−2) × 35
 = 9 − (−280)
 = 9 + 280
 = 289



 The fact that the discriminant is positive tells us that this quadratic has two distinct real 
roots. To find the roots, we can use the quadratic formula:

x = [−b ± (b 2 − 4ac)1/2] / (2a)

 We already know the discriminant, so we can plug it in directly along with the values for 
a, b, and c, getting

x = [−3 ± 2891/2] / [2 × (−2)]
 = (−3 ± 17) / (−4)
 = (−3 + 17) / (−4) or (−3 − 17) / (−4)
 = 14 / (−4) or (−20) / (−4)
 = −7/2 or 5

 The real roots are x = −7/2 or x = 5, and the real-number solution set is {−7/2, 5}. For 
complementary credit, you can check these roots by plugging them into the original qua-
dratic to be sure that they work.

 10.  Once again, we can calculate the discriminant to find out how many real roots there 
are. The equation of interest is

4x 2 + x + 3 = 0

Here, a = 4, b = 1, and c = 3. Therefore

b 2 − 4ac = 12 − 4 × 4 × 3
 = 1 − 48
 = −47

 Because this is negative, we can conclude that the quadratic has no real roots. The real-
number solution set is therefore ∅, the empty set. But this does not mean that there are 
no roots at all! In the next chapter, we’ll learn about the roots of quadratics that have 
negative discriminants.

Chapter 23
 1. We’ve been told to find the roots of this quadratic:

(x − j7)(x + j7) = 0

 Because this equation is in binomial factor form, the roots can be found by solving these 
two first-degree equations:

x − j7 = 0
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and

x + j7 = 0

 In the top equation, we can add j7 to each side, getting the root x = j7. In the bottom 
equation, we can subtract j7 from each side, getting the root x = −j7. The roots can be 
formally expressed this way:

x = j7  or  x = −j7

The solution set is

X = {j7, −j7}

 2.  To obtain the polynomial standard form of the equation stated in Prob. 1, we must 
multiply out the left side using the product of sums rule. We can minimize the risk 
of getting confused by the signs if we convert the first binomial factor to a sum. We 
proceed as follows:

[x + (−j7)](x + j7) = 0

x 2 + xj7 + (−j7x) + (−j7)(j7) = 0
x 2 + j7x + (−j7x) + (−j × j) × 7 × 7 = 0

x 2 + 49 = 0

 3. Remember the general polynomial standard form of a quadratic equation:

ax 2 + bx + c = 0

 In the equation we derived in solution to Prob. 2, we have a = 1, b = 0, and c = 49. 
Plugging these values into the quadratic formula and then working out the arithmetic, 
we get

x = [−b ± (b2 − 4ac)1/2] / (2a)
 = [−0 ± (02 − 4 × 1 × 49)1/2] / (2 × 1)
 = [±(−196)1/2] / 2
 = ±j14/2
 = ±j7

This agrees with the results we got when we solved Prob. 1. 



 4. Here are the roots again, for reference:

x = j 7  or  x = −j 3

 Both of these statements are equations. In the first one, we can subtract j7 from each side. 
In the second one, we can add j3 to each side. This gives us

x − j7 = 0

and

x + j3 = 0

The binomial factor form of a quadratic with the above mentioned roots is therefore

(x − j7)(x + j3) = 0

 5.  To find the polynomial standard form of the equation we just found, we must multiply 
out the left side using the product of sums rule. Let’s convert the first binomial to a sum 
to avoid sign confusion. Then we can take it from there:

[x + (−j7)](x + j3) = 0
x 2 + xj3 + (−j7x) + (−j7)(j3) = 0

x 2 + j3x + (−j7x) + (−j × j) × 7 × 3 = 0
x 2 − j4x + 21 = 0

This is a twist we haven’t seen yet! One of the coefficients is imaginary.

 6.  Once again, for reference, let’s state the general polynomial standard form of a quadratic 
equation:

ax 2 + bx + c = 0

 In the equation we derived in solution to Prob. 5, we have a = 1, b = −j4, and c = 21. Plug-
ging these values into the quadratic formula and then working out the arithmetic, we get

x = [−b ± (b2 − 4ac)1/2] / (2a)
 = {−(−j4) ± [(−j4)2 − 4 × 1 × 21]1/2} / (2 × 1)

 Now let’s be careful with (−j4)2. This is the sort of expression that can easily cause us to make 
a mistake. We can break it down like this, and then solve, being careful with the signs:

 (−j4)2 = (−1 × j × 4)2

 = (−1)2 × j 2 × 42

 = 1 × (−1) × 16
 = −16
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 Now let’s substitute back in where we left off. That gives us an expression that’s still tricky. 
But it can be simplified like this:

x = [−(−j4) ± (−16 − 4 × 1 × 21)1/2] / (2 × 1)
 = [j4 ± (−100)1/2] / 2
 = (j4 ± j10) / 2

This breaks down to

x = (j4 + j10)/2  or  x = (j4 − j10)/2

which simplifies to

x = j14/2  or  x = j(−6)/2

and further to

x = j7  or  x = −j3

These are the roots we chose in Prob. 4 to “manufacture” the quadratic.

 7. We’ve been told to find the roots of this quadratic:

(x + 2 + j3)(x − 2 − j3) = 0

 We can convert this pair of trinomial factors to a pair of binomial factors by changing the 
first subtraction in the second factor to addition, and also by grouping the terms within 
the factors, as follows:

 [x + (2 + j3)][x + (−1)(2 + j3)] = 0

which can be rewritten as

 [x + (2 + j3)][x − (2 + j3)] = 0

 Now we have an equation in binomial factor form, where the factors both consist of the 
variable x plus or minus a numerical constant. The roots can therefore be found by solv-
ing the following two first-degree equations:

x + (2 + j3) = 0

and

x − (2 + j3) = 0

In the top equation, we can subtract the quantity (2 + j3) from each side, getting

x = −(2 + j3)
= −2 − j3



In the bottom equation, we can add the quantity (2 + j3) to each side, getting

x = 2 + j3

The roots can be formally expressed this way:

x = −2 − j3  or  x = 2 + j3

The solution set is

X = {(−2 − j3), (2 + j3)}

 8.  To get the polynomial form of the quadratic stated in Prob. 7, we can multiply out the 
trinomial factors. Here’s the original equation again:

(x + 2 + j3)(x − 2 − j3) = 0

 Let’s convert the subtractions in the second factor to negative additions individually to 
minimize the risk of getting the signs mixed up when we expand the equation into poly-
nomial form. That gives us

(x + 2 + j3)[x + (−2) + (−j3)] = 0

Now we can multiply out, obtaining

x 2 + (−2x) + (−j3x)
+ 2x + (−4) + (−j6)
+ j3x + (−j6) + 9

= 0

which simplifies to

x 2 + (−j12) + 5 = 0

and further to

x 2 + (5 − j12) = 0

 9.  Here’s the polynomial equation we derived. It’s interesting, because the coefficient of x
is equal to 0, while the stand-alone constant is complex.

x 2 + (5 − j12) = 0

Here are the roots we found:

x = −2 − j3  or  x = 2 + j3
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 Plugging in the first root and converting the subtractions to additions, we can proceed 
like this, refining the equation step-by-step:

 [−2 + (−j3)]2 + [(5 + (−j12)] = 0
[−2 + (−j3)][−2 + (−j3)] + [(5 + (−j12)] = 0

 4 + j6 + j6 + (−j)29 + 5 + (−j12) = 0

Keeping in mind that (−j)2 = −1, we can simplify to

4 + j6 + j6 + (−9) + 5 + (−j12) = 0

 When we add all the terms on the left side, we get 0 = 0. The first root checks! Now we’ll 
plug in the second root and convert the subtraction to negative addition. We can proceed 
like this, step-by-step:

 (2 + j3)2 + [5 + (−j12)] = 0
(2 + j3)(2 + j3) + [5 + (−j12)] = 0
4 + j6 + j6 + j 29 + 5 + (−j12) = 0

 4 + j6 + j6 + (−9) + 5 + (−j12) = 0

 That’s the same equation we got when we plugged in the other root. When we add all the 
terms on the left side, we get 0 = 0. The second root checks!

 10.  We’ve been told to convert the following equation, which consists of two trinomial 
factors, into the polynomial standard form for a quadratic:

(j2x + 2 + j3)(−j5x + 4 − j5) = 0

 This might look daunting at first, but our assigned task is merely a matter of multiplying 
things out, taking care with the signs, and not rushing it! Let’s begin by converting the 
subtraction in the second factor to addition. That gives us

(j2x + 2 + j3)[(−j5x + 4 + (−j5)] = 0

We can use the product of sums rule, remembering that −j × j = 1. It goes like this:

(j2x)(−j5x) + j8x + (j2x)(−j5)
+ (−j10x) + 8 + (−j10)

+ (j3)(−j5x) + j12 + (j3)(−j5)
= 0

Simplifying the individual terms, we get

10x 2 + j8x + 10x
+ (−j10x) + 8 + (−j10)

+ 15x + j12 + 15
= 0



 Let’s use the commutative law for addition to rearrange the terms according to powers of 
x with each power of x on its own line:

10x 2

+ j8x + 10x + (−j10x) + 15x
+ 8 + (−j10) + j12 + 15

= 0

We can rewrite this as

10x 2

+ [ j8 + 10 + 15 + (−j10)]x
+ 8 + 15 + (−j10) + j12

= 0

This simplifies to

10x 2 + (25 − j2)x + (23 + j2) = 0

Chapter 24
 1.  This function is stated in binomial factor form. To figure out whether its graph opens 

upward or downward, we must morph it into polynomial standard form by multiplying 
out the factors:

y = (x − 3)(4x − 1)
 = 4x 2 + (−x) + (−12x) + 3
 = 4x 2 − 13x + 3

The coefficient of x 2 is positive. That means the parabola opens upward.

 2.  The real zeros of the quadratic function stated in Prob. 1 can be found from the factors 
in the original version. We must solve these two first-degree equations:

x − 3 = 0

and

4x − 1 = 0

 In the top equation, we can add 3 to each side, getting x = 3. In the bottom equation, we 
can add 1 to each side and then divide through by 4, obtaining x = 1/4. The real zeros of 
the quadratic function are therefore x = 3 or x = 1/4.
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 3.  Because the parabola opens upward, we know that its vertex is an absolute minimum. 
To find the x-coordinate of this point, we average the two zeros:

xmin = (3 + 1/4)/2
 = (12/4 + 1/4)/2
 = (13/4)/2
 = 13/8

 We can calculate the y-coordinate of this point by plugging in 13/8 for x in the polyno-
mial form of the function:

ymin = 4xmin
2 − 13xmin + 3

 = 4 × (13/8)2 − 13 × 13/8 + 3
 = 4 × 169/64 − 169/8 + 3
 = 676/64 − 1,352/64 + 192/64
 = (676 − 1,352 + 192) / 64
 = −484/64
 = −121/16

 The coordinates of the absolute minimum are (13/8, −121/16).

 4.  We know the two points where the curve crosses the x axis (representing the zeros of 
the function). The left-hand x-intercept point is (1/4, 0). The right-hand x-intercept 
point is (3, 0). We also know that the absolute minimum point is (13/8, −121/16). The 
graph, based on these three known points, is shown in Fig. C-2. On both axes, each 
increment represents 1 unit.

 5.  Remember the polynomial standard form for a quadratic function of a variable x, where 
we have coefficients a and b, and a stand-alone constant c. If we let the dependent 
variable be called y, then

y = ax 2 + bx + c

The function we’re interested in is

y = 7x 2 + 5x + 2

 In the polynomial, we have a > 0, so we know that the graph of the function is a parabola 
that opens upward. When we examine the discriminant d, we find that

d = b2 − 4ac
 = 52 − 4 × 7 × 2
 = 25 − 56
 = −31

The fact that d is negative tells us that the quadratic equation

7x 2 + 5x + 2 = 0



 has no real roots, so the quadratic function has no real zeros. That means the graph does 
not cross the x axis anywhere. If a parabola opens upward and fails to cross the x axis, then 
that parabola must lie entirely above the x axis.

 6.  In the polynomial, we have a = 7 and b = 5. The x-value of the absolute minimum 
point, xmin, is therefore

xmin = −b/(2a)
 = −5 / (2 × 7)
 = −5/14

 We can find the y-value of the absolute minimum point, ymin, by plugging in xmin to the 
function and doing the arithmetic:

ymin = 7x min
2 + 5xmin + 2

 = 7 × (−5/14)2 + 5 × (−5/14) + 2
 = 7 × 25/196 − 25/14 + 2
 = 175/196 − 350/196 + 392/196
 = −175/196 + 392/196
 = 217/196
 = 31/28

The coordinates of the vertex point on the parabola are (−5/14, 31/28).

x

y

Each axis
increment
is 1 unit

(13/8,–121/16)

(1/4,0) (3,0)

Figure C-2  Illustration for the solution to Prob. 4 
in Chap. 24.
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 7. Here’s the quadratic function again, for reference:

y = −2x 2 + 2x − 5

 The coefficient of x 2 is negative. Therefore, when we graph the function, we get a parab-
ola that opens downward.

 8.  To find the real zeros (if any), we can calculate the discriminant based on the general 
standard polynomial equation for a quadratic:

y = ax 2 + bx + c

In this situation, we have a = −2, b = 2, and c = −5. The discriminant, d, is

d = b2 − 4ac
 = 22 − 4 × (−2) × (−5)
 = 4 − 40
 = −36

Because d is negative, we know that this function has no real zeros.

 9.  The x-coordinate of the vertex point, which represents an absolute maximum because 
the parabola opens downward, is

xmax = −b/(2a)
 = −2 / [2 × (−2)]
 = −2 / (−4)
 = 2/4
 = 1/2

The y-coordinate can be found by plugging in xmax and calculating from the function:

 ymax = −2x 2
max + 2xmax − 5

 = −2 × (1/2)2 + 2 × 1/2 − 5

 = −2 × 1/4 + 1 − 5

 = −1/2 + 1 − 5

 = 1/2 − 5

 = −9/2

The coordinates of the vertex are (1/2, −9/2).



 10.  We need more points for reference. We can find two more points on the graph by 
plugging in values of x smaller and larger than xmax. Let’s try x = −1. Then

y = −2x 2 + 2x − 5
 = −2 × (−1)2 + 2 × (−1) − 5
 = −2 − 2 − 5
 = −4 − 5
 = −9

 Now we know that (−1, −9) is on the parabola. The x-value that we chose to find that 
point, −1, happens to be 3/2 units smaller than xmax. Let’s choose a value of x that’s 3/2 
units larger than xmax. That would be x = 2. Then

y = −2x 2 + 2x − 5
 = −2 × 22 + 2 × 2 − 5
 = −8 + 4 − 5
 = −4 − 5
 = −9

 This gives us (2, −9) as a third point on the graph. Now that we know three points on the 
curve, we can draw an approximation of the graph. Figure C-3 illustrates this parabola. 
On both axes, each increment represents 1 unit.

x

y

Each axis
increment
is 1 unit

(1/2,–9/2)

(2,–9)(–1,–9)

Figure C-3  Illustration for the solution to Prob. 10 
in Chap. 24.
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Chapter 25

 1. Here’s the binomial-cubed equation that we’ve been told to multiply out:

(a + b)3 = 0

Let’s start by rewriting the equation as a product of three identical binomials:

(ax + b)(ax + b)(ax + b) = 0

We can multiply the second two factors and then simplify to get

(ax + b)(a2x 2 + 2abx + b 2) = 0

When we multiply these two factors and then simplify, we obtain

a3x 3 + 3a2bx 2 + 3ab2x + b3 = 0

 2. Here’s the binomial-cubed equation that we’ve been told to multiply out:

(31/2x − 121/2)3 = 0 

We can rewrite this as

(31/2x − 121/2)(31/2x − 121/2)(31/2x − 121/2) = 0 

 Let’s multiply out the second two factors. We must pay attention to the signs! The expres-
sion evolves as follows:

(31/2x − 121/2)(31/2x − 121/2)
(31/2)2x 2 − (31/2 × 121/2)x − (121/2 × 31/2)x + (121/2)2

3x 2 − (3 × 12)1/2x − (12 × 3)1/2x + 12
3x 2 − 361/2x − 361/2x + 12

3x 2 − 6x − 6x + 12
3x 2 − 12x + 12

Now, for the cubic, we have

(31/2x − 121/2)(3x 2 − 12x + 12) = 0

When we multiply these factors, we get

(31/2 × 3)x 3 − (31/2 × 12)x 2 + (31/2 × 12)x
− (121/2 × 3)x 2 + (121/2 × 12)x − 121/2 × 12



We can morph the mixed products to get

 (31/2 × 91/2)x 3 − (31/2 × 1441/2)x 2 + (31/2 × 1441/2)x
− (121/2 × 91/2)x 2 + (121/2 × 1441/2)x − 121/2 × 1441/2

Applying the product of powers rule to each of these terms, we obtain

(3 × 9)1/2x 3 − (3 × 144)1/2x 2 + (3 × 144)1/2x
− (12 × 9)1/2x 2 + (12 × 144)1/2x − (12 × 144)1/2

This simplifies to

271/2x 3 − 4321/2x 2 + 4321/2x
− 1081/2x 2 + 1,7281/2x − 1,7281/2

 Consolidating the terms for each power of x and then returning the expression to the left 
side of the complete equation, we get

271/2x 3 − (4321/2 + 1081/2)x 2

+ (4321/2 + 1,7281/2)x − 1,7281/2 = 0

 That’s as “simple” as we can get this cubic in polynomial standard form. All of the coefficients, 
and the stand-alone constant, are irrational. This is the same equation that we solved in the 
first “challenge” in the chapter text, finding a single real root of 2. For extra credit, find a 
calculator that displays a lot of digits (such as the scientific calculator program in a personal 
computer), substitute 2 for x in the result we just got, and verify that it works out!

 3.  Here again, for reference, is the binomial factor form of the equation that we have been 
told to multiply out:

(3x + 2)(5x + 6)(−7x − 1) = 0

Let’s multiply the second two factors first. We get

(3x + 2)(−35x 2 − 5x − 42x − 6) = 0

which consolidates to

(3x + 2)(−35x 2 − 47x − 6) = 0

Now we can multiply the binomial by the trinomial, obtaining

−105x 3 − 141x 2 −18x − 70x 2 − 94x − 12 = 0

which consolidates to

−105x 3 − 211x 2 − 112x − 12 = 0
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We can multiply through by −1 to get

105x 3 + 211x 2 + 112x + 12 = 0

 Either of the last two equations is a legitimate expression of the polynomial standard form 
for the cubic. The second one more “sign-friendly.”

 4.  Here are the real roots we found in the chapter text for the equation stated back at the 
beginning of Prob. 3:

x = −2/3  or  x = −6/5  or  x = −1/7

 When we plug x = −2/3 into the final polynomial equation we found in solution to Prob. 3 
and then grind through the arithmetic, the process goes like this, step-by-step:

105x 3 + 211x 2 + 112x + 12 = 0
105 × (−2/3)3 + 211 × (−2/3)2 + 112 × (−2/3) + 12 = 0
105 × (−8/27) + 211 × (4/9) + 112 × (−2/3) + 12 = 0

−840/27 + 844/9 − 224/3 + 12 = 0
−840/27 + 2,532/27 − 2,016/27 + 324/27 = 0

(−840 + 2,532 − 2,016 + 324) / 27 = 0
−840 + 2,532 − 2,016 + 324 = 0

0 = 0

To check the root x = −6/5, we go through this sequence of calculations:

105x 3 + 211x 2 + 112x + 12 = 0
105 × (−6/5)3 + 211 × (−6/5)2 + 112 × (−6/5) + 12 = 0

105 × (−216/125) + 211 × (36/25) + 112 × (−6/5) + 12 = 0
−22,680/125 + 7,596/25 − 672/5 + 12 = 0

−22,680/125 + 37,980/125 − 16,800/125 + 1,500/125 = 0
(−22,680 + 37,980 − 16,800 + 1,500) / 125 = 0

−22,680 + 37,980 − 16,800 + 1,500 = 0
0 = 0

To check the root x = −1/7, we go through this arithmetic, step-by-step:

 105x 3 + 211x 2 + 112x + 12 = 0
 105 × (−1/7)3 + 211 × (−1/7)2 + 112 × (−1/7) + 12 = 0
 105 × (−1/343) + 211 × (1/49) + 112 × (−1/7) + 12 = 0
 −105/343 + 211/49 − 112/7 + 12 = 0
 −105/343 + 1,477/343 − 5,488/343 + 4,116/343 = 0
 (−105 + 1,477 − 5,488 + 4,116) / 343 = 0
 −105 + 1,477 − 5,488 + 4,116 = 0
 0 = 0



 5. Here’s the general binomial-trinomial equation once again:

(a1x + b1)(a2x 2 + b2x + c) = 0

Using the product of sums rule, we can rewrite this as

a1a2x 3 + a1b2x 2 + a1cx + b1a2x 2 + b1b2x + b1c = 0

 When we bring the terms for x 2 next to each other, and then do the same thing with the 
terms for x, we get

a1a2x 3 + a1b2x 2 + b1a2x 2 + a1cx + b1b2x + b1c = 0

 Let’s use the commutative law for multiplication on the third term to get “a before b” in 
the interest of elegance! That gives us

a1a2x 3 + a1b2x 2 + a2b1x 2 + a1cx + b1b2x + b1c = 0

 Finally, we can use the distributive law for multiplication over addition to consolidate the 
coefficients for x 2 and x, giving us the equation in true polynomial standard form:

a1a2x 3 + (a1b2 + a2b1)x 2+ (a1c + b1b2)x + b1c = 0

 6.  If the coefficients and constants are real numbers, and if a1 and a2 are both nonzero, 
then the cubic

(a1x + b1)(a2x 2 + b2x + c) = 0

 has at least one real root, which is x = −b1/a1. That’s the root that we get when we create 
a first-degree equation from the binomial term by setting it equal to 0. The cubic might 
have no more real roots (therefore one real root in total), one more (two in total), or two 
more (three in total). To find out which of these situations is the true case, we can look at 
the discriminant d for the quadratic

a2x 2 + b2x + c = 0

In this notation,

d = b2
2 − 4a2c

 If d > 0, then the quadratic has two real roots, so the original cubic has three. If d = 0, 
then the quadratic has one real root with multiplicity 2, so the original cubic has two real 
roots, one of which has multiplicity 2. If d < 0, then the quadratic has no real roots, so 
the original cubic has only one.

 7. For reference, here’s the equation again:

(3x + 5)(16x 2 − 56x + 49) = 0
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We found the real roots

x = −5/3  or  x = 7/4 

Let’s put −5/3 in place of x, and then carry out the calculations. We get

[3 × (−5/3) + 5][16 × (−5/3)2 − 56 × (−5/3) + 49] = 0

The first term in square brackets is equal to 0. Let’s check:

3 × (−5/3) + 5
= −15/3 + 5

= −5 + 5
= 0

 This means the entire expression must be 0; it doesn’t matter what the second term is. 
Now let’s insert 7/4 for x. We have only to work with the trinomial term this time, and it 
comes out equal to 0. Let’s try it:

16 × (7/4)2 − 56 × (7/4) + 49
= 16 × 49/16 − 392/4 + 49

= 49 − 98 + 49
= −49 + 49

= 0

The whole expression must equal 0 because the second factor is 0.

 8.  We begin by setting up the synthetic division array with the “test root,” x = 5, and the 
coefficients in the top row, like this:

5 −9 21 104 80

# # #

# # # #

Subsequent steps proceed as follows.

5 −9 21 104 80

# # #

−9 # # #

5 −9 21 104 80

−45 # #

−9 # # #



5 −9 21 104 80

−45 # #

−9 −24 # #

5 −9 21 104 80

−45 −120 #

−9 −24 # #

5 −9 21 104 80

−45 −120 #

−9 −24 −16 #

5 −9 21 104 80

−45 −120 −80

−9 −24 −16 #

5 −9 21 104 80

−45 −120 −80

−9 −24 −16 0

We get a remainder of 0, so we know that x = 5 is a real root of the original cubic.

 9.  We can write the cubic presented in Prob. 8 in binomial-trinomial form on the basis of 
the results of the synthetic division. Because x = 5 is a real root of the cubic, we know 
that it has a binomial factor of (x − 5). In the trinomial factor, the coefficient of x 2 is 
−9, the coefficient of x is −24, and the stand-alone constant is −16, because those three 
numbers appear, in that order, in the bottom row before the remainder 0. We can now 
write down the entire binomial-trinomial cubic equation:

(x − 5)(−9x 2 − 24x − 16) = 0

 To figure out whether there are any other roots besides x = 5, we must find the discrimi-
nant of the trinomial factor. If we let a2 = −9, b2 = −24, and c = −16, we can find the 
discriminant, d, as follows:

d = b2
2 − 4a2c

 = (−24)2 − 4 × (−9) × (−16)
 = 576 − 576
 = 0
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 Because d = 0, we know that the quadratic we get by setting the trinomial equal to 
0 has one real root with multiplicity 2. That means the original cubic has one more 
real root besides x = 5, and that root has multiplicity 2. To find it, we can use the 
quadratic formula with the coefficients and constant named according to the above 
scheme:

x = [−b2 ± (b2
2 − 4a2c)1/2] / (2a2)

Because the discriminant is equal to 0, we can simplify this to

x = −b2 / (2a2)

Substituting in the values a2 = −9 and b2 = −24, we get

x = −(−24) / [2 × (−9)]
 = 24/(−18)
 = −24/18
 = −4/3

 The roots of the cubic are therefore x = 5 or x = −4/3. The root x = −4/3 occurs with 
multiplicity 2. The solution set is X = {5, −4/3}.

 10. The new cubic, written in binomial-trinomial form, looks like this:

(x + 3/2)(6x 2 − 4x + 2) = 0

 Let’s examine the discriminant d of the trinomial. Setting a2 = 6, b2 = −4, and c = 2, 
we get

d = b2
2 − 4a2c

 = (−4)2 − 4 × 6 × 2 
 = 16 − 48
 = −32

 Because d < 0, the new cubic has only one real root, x = −3/2, exactly as the original cubic 
did. (The two complex roots, however, differ in this equation compared with those in the 
final “challenge” in the chapter text. For extra credit, you can verify this fact.)

Chapter 26

 1.  In each of these situations, the trinomial can be factored into the square of a binomial. 
Then that squared binomial is raised to the indicated power.
(a) Here is the original equation:

(x 2 + 6x + 9)2 = 0



   In the trinomial, the coefficient of x 2 is 1, the coefficient of x is 6, and the stand-
alone constant is 9. We must find a number, such that adding it to itself yields 6 
while squaring it yields 9. That number is 3. The binomial is therefore (x + 3), and 
we have

[(x + 3)2]2 = 0

  which simplifies to

(x + 3)4 = 0

(b) Here is the original equation:

(x 2 − 4x + 4)3 = 0

   In the trinomial, the coefficient of x 2 is 1, the coefficient of x is −4, and the con-
stant is 4. We must find a number, such that adding it to itself yields −4 while 
squaring it yields 4. That number is −2. The binomial is therefore (x − 2), and 
we have

[(x − 2)2]3 = 0

  which simplifies to

(x − 2)6 = 0

(c) Here is the original equation:

(16x 2 − 24x + 9)4 = 0

   This trinomial is the square of (4x − 3). Therefore, the original equation is equivalent to

[(4x − 3)2]4 = 0

  which simplifies to

(4x − 3)8 = 0

 2.  In each case, we can remove the exponent from the binomial and then set it equal to 0, 
obtaining a first-degree equation. The real root of the higher-degree equation is equal to 
the solution of the first-degree equation. The multiplicity of the root is the value of the 
exponent n to which the binomial is raised.
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(a) The real root is found by solving

x + 3 = 0

   That root is x = −3. Because the binomial is raised to the fourth power, this single real 
root has multiplicity 4.

(b) The real root is found by solving

x − 2 = 0

   That root is x = 2. Because the binomial is raised to the sixth power, this single real 
root has multiplicity 6.

(c) The real root is found by solving

4x − 3 = 0

   We can add 3 to each side and then divide through by 4, obtaining the root x = 3/4. 
Because the binomial is raised to the eighth power, this single real root has multiplicity 8.

 3.  In each of these situations, the trinomial can be factored into the product of two 
different binomials. Then that product is raised to the indicated power.
(a) Here is the original equation:

(x 2 − 3x + 2)2 = 0

   In the trinomial, the coefficient of x 2 is 1, the coefficient of x is −3, and the stand-
alone constant is 2. This trinomial factors into the product of (x − 1) and (x − 2). 
Therefore, the original equation can be rewritten as

[(x − 1)(x − 2)]2 = 0

  which can be further broken down to

(x − 1)2(x − 2)2 = 0 

(b) Here is the original equation:

(−3x 2 − 5x + 2)5 = 0

   In the trinomial, the coefficient of x 2 is −3, the coefficient of x is −5, and the constant 
is 4. This trinomial factors into the product of (x + 2) and (−3x + 1). Therefore, we 
can rewrite the original equation as

[(x + 2)(−3x + 1)]5 = 0



  and break it down to

(x + 2)5(−3x + 1)5 = 0

(c) Here is the original equation:

(4x 2 − 9)3 = 0

   Here, the coefficient of x 2 is 4, the coefficient of x is 0, and the constant is −9. This 
trinomial factors into the product of (2x + 3) and (2x − 3). Therefore, we can rewrite 
the original equation as

[(2x + 3)(2x − 3)]3 = 0

  and break it down to

(2x + 3)3(2x − 3)3 = 0

 4.  In each case, we can remove the exponents from the binomials, and then consider each 
binomial separately as a first-degree equation when it is set equal to 0. The real roots of 
the higher-degree equation are equal to the solutions of the first-degree equations. The 
multiplicity of each root is the power to which its associated binomial is raised.
(a) The real roots are found by solving

x − 1 = 0

  and

x − 2 = 0

   Those roots are x = 1 or x = 2. Because each binomial is squared, each of these roots 
has multiplicity 2.

(b) The real roots are found by solving

x + 2 = 0

  and

−3x + 1 = 0

   Those roots are x = −2 or x = 1/3. Because each binomial is raised to the fifth power, 
each of these roots has multiplicity 5.

(c) The real roots are found by solving

2x + 3 = 0

Chapter 26  695



696  Worked-Out Solutions to Exercises: Chapters 21 to 29

  and

2x − 3 = 0

   Those roots are x = −3/2 or x = 3/2. Because each binomial is cubed, each of these 
roots has multiplicity 3.

 5.  Here’s the original binomial factor equation, which we have been told to solve and 
scrutinize:

(x − 3/2)2(2x − 7)2(7x)3(−3x + 5)5 = 0

 Let’s set each binomial equal to 0, and then solve the resulting first-degree equations. 
Those equations are

x − 3/2 = 0
 2x − 7 = 0
 7x = 0
 −3x + 5 = 0

 The solutions to these first-degree equations, and therefore the real roots of the higher-
degree equation, are

x = 3/2  or  x = 7/2  or  x = 0  or  x = 5/3

 The solution set is X = {3/2, 7/2, 0, 5/3}. The multiplicity of each root is the same as the 
power to which its binomial is raised in the original equation. Therefore, the root x = 3/2 
has multiplicity 2, the root x = 7/2 has multiplicity 2, the root x = 0 has multiplicity 3, 
and the root x = 5/3 has multiplicity 5. The degree of the original equation is the sum of 
the exponents attached to the factors, which is 2 + 2 +3 + 5 = 12.

 6. Here’s the original binomial factor equation once again, for reference:

(x + 4)(2x − 8)2(x/3 + 12)3 = 0

 Let’s set each binomial equal to 0, and then solve the resulting first-degree equations. 
Those equations are

x + 4 = 0
 2x − 8 = 0
 x/3 + 12 = 0

 The solution to the first of these is x = −4. The solution to the second is x = 4. To solve 
the third equation, we can subtract 12 from each side and then multiply through by 3, 
obtaining x = −36. The roots of the original equation are therefore

x = −4  or  x = 4  or  x = −36



 The solution set is X = {−4, 4, −36}. The multiplicity of each root is the same as the power 
to which its binomial is raised in the original equation. Therefore, the root x = −4 has 
multiplicity 1, the root x = 4 has multiplicity 2, and the root x = −36 has multiplicity 3. 
The degree of the original equation is the sum of the exponents attached to the factors, 
which is 1 + 2 + 3 = 6.

 7. For reference, the polynomial equation is

2x 5 − 3x 3 − 2x + 2 = 0

 We have many options! The largest absolute value of any coefficient or constant is 3, so 
we can try 3 for the upper bound and −3 for the lower bound. If either or both of these 
fail, we can try values farther from 0. The coefficients and constant, in order of decreasing 
powers of x, are 2, 0, −3, 0, −2, and 2. (The coefficients of x 4 and x 2 are both equal to 0.) 
Here’s the synthetic division array for the “test root” 3:

3 2 0 −3 0 −2 2

# # # # #

# # # # # #

When we go through the synthetic division process, we end up with

3 2 0 −3 0 −2 2

6 18 45 135 399

2 6 15 45 133 401

 None of the numbers in the bottom row are negative. This tells us that 3 is an upper 
bound for the real roots. To try the “test root” −3, we set up the array

3 2 0 −3 0 −2 2

# # # # #

# # # # # #

The synthetic division process leads us to

−3 2 0 −3 0 −2 2

−6 −18 −45 135 −399

2 −6 15 −45 133 −397

 The numbers in the bottom row alternate in sign. This indicates that −3 is a lower bound 
for the real roots.

 8. Here is an outline of the process for finding the rational roots of the equation

2x 5 − 3x 3 − 2x + 2 = 0
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• All the coefficients, as well as the stand-alone constant, are integers, so we don’t have 
to multiply the equation through by anything.

• The integer factors m of the stand-alone constant are 2, 1, −2, and −1.
• The integer factors n of the leading coefficient are 2, 1, −2, and −1.
• All the possible ratios r = m/n are 2, 1, 1/2, −2, −1, and −1/2.
• We input rational numbers r of 2, 1, 1/2, −2, −1, and −1/2 to synthetic division arrays, 

and see if we get a remainder of 0 for any of them.
• We don’t get a remainder of 0 when we input any of the above values of r to the syn-

thetic division array. Therefore, the equation has no rational roots.

 9. For reference, the polynomial equation is

3x 5 − 3x 2 + 2x − 2 = 0

 Let’s use the same method as we did in solution to Prob. 7. The largest absolute value of any 
coefficient or constant is 3, so we can try 3 for the upper bound and −3 for the lower bound. 
If either or both of these fail, we can try values farther from 0. The coefficients and constant, 
in order of decreasing powers of x, are 3, 0, 0, −3, 2, and −2. (The coefficients of x 4 and x 3

are both equal to 0.) Here’s the synthetic division array for the “test root” 3:

3 3 0 0 −3 2 −2

# # # # #

# # # # # #

When we go through the synthetic division process, we end up with

3 3 0 0 −3 2 −2

9 27 81 234 708

3 9 27 78 236 706

 None of the numbers in the bottom row are negative. This tells us that 3 is an upper 
bound for the real roots. To try the “test root” −3, we set up the array

3 3 0 0 −3 2 −2

# # # # #

# # # # # #

The synthetic division process leads us to

−3 3 0 0 −3 2 −2

−9 27 −81 252 −762

3 −9 27 −84 254 −764



 The numbers in the bottom row alternate in sign. This indicates that −3 is a lower bound 
for the real roots.

 10. Here is an outline of the process for finding the rational roots of the equation

3x 5 − 3x 2 + 2x − 2 = 0

 •  All the coefficients, as well as the stand-alone constant, are integers, so we don’t have to 
multiply the equation through by anything.

 •  The integer factors m of the stand-alone constant are 2, 1, −2, and −1.

 •  The integer factors n of the leading coefficient are 3, 1, −3, and −1.

 • All the possible ratios r = m/n are 2, 1, 2/3, 1/3, −2, −1, −2/3, and −1/3.

 •  We input rational numbers r of 2, 1, 2/3, 1/3, −2, −1, −2/3, and −1/3 to synthetic 
division arrays, and see if we get a remainder of 0 for any of them.

 •  We get a remainder of 0 only when r = 1. Therefore, x = 1 is the only rational root of 
the equation.

Chapter 27
 1. Here are the two equations in their original forms:

3x + y − 1 = 0

and

2x 2 − y + 1 = 0

We can morph these to obtain the following functions of x:

y = −3x + 1

and

y = 2x 2 + 1

When we mix the right sides of these equations, we obtain

−3x + 1 = 2x 2 + 1

which morphs into the quadratic equation

2x 2 + 3x = 0
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 Let a be the coefficient of x 2, let b be the coefficient of x, and let c be the stand-alone 
constant. Then a = 2, b = 3, and c = 0. The quadratic formula tells us that

x = [−b ± (b 2 − 4ac)1/2] / (2a)
 = [−3 ± (32 − 4 × 2 × 0)1/2] / (2 × 2)
 = (−3 ± 3) / 4
 = 0/4  or  −6/4
 = 0  or  −3/2

 The roots are x = 0 or x = −3/2. We can plug these into either of the original functions to 
get the y-values. The linear function is easier. When x = 0, we have

y = −3x + 1
 = −3 × 0 + 1
 = 0 + 1
 = 1

When x = −3/2, we have

y = −3x + 1
 = −3 × (−3/2) + 1
 = 9/2 + 1
 = 9/2 + 2/2
 = 11/2

 The solutions to the system are (x,y) = (0,1) and (x,y) = (−3/2,11/2).

 2. First, let’s check (0,1) in the original linear equation:

3x + y − 1 = 0
3 × 0 + 1 − 1 = 0

0 + 1 − 1 = 0
1 − 1 = 0

0 = 0

Next, let’s check (−3/2,11/2) in that same equation:

3x + y − 1 = 0
3 × (−3/2) + 11/2 − 1 = 0

−9/2 + 11/2 − 1 = 0
2/2 − 1 = 0
1 − 1 = 0

0 = 0



Next, let’s check (0,1) in the original two-variable quadratic equation:

2x 2 − y + 1 = 0
2 × 02 − 1 + 1 = 0
2 × 0 − 1 + 1 = 0

0 − 1 + 1 = 0
−1 + 1 = 0

0 = 0

Finally, let’s check (−3/2,11/2) in that same equation:

2x 2 − y + 1 = 0
2 × (−3/2)2 − 11/2 + 1 = 0

2 × 9/4 − 11/2 + 1 = 0
9/2 − 11/2 + 1 = 0

−2/2 + 1 = 0
−1 + 1 = 0

0 = 0

 3. Here are the two equations in their original forms:

3x + y − 1 = 0

and

2x 2 − 3x − y + 3 = 0

We can manipulate these to obtain the following functions of x :

y = −3x + 1

and

y = 2x 2 − 3x + 3

When we mix the right sides of these equations, we obtain

−3x + 1 = 2x 2 − 3x + 3

which can be rewritten in standard form as the quadratic equation

2x 2 + 2 = 0
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 Let a be the coefficient of x 2, let b be the coefficient of x, and let c be the stand-alone 
constant. Then a = 2, b = 0, and c = 2. The quadratic formula tells us that

x = [−b ± (b2 − 4ac)1/2] / (2a)
 = [0 ± (02 − 4 × 2 × 2)1/2] / (2 × 2)
 = ± (−16)1/2 / 4
 = ± j4 / 4
 = ± j

 The roots are x = j or x = −j. We can plug these into either of the original functions to get 
the y-values. This time, let’s use the quadratic function. When x = j, we have

y = 2j 2 − 3j + 3
 = 2 × (−1) − j3 + 3
 = −2 − j3 + 3
 = 1 − j3

When x = −j, we have

y = 2(−j)2 − 3(−j) + 3
 = 2 × (−1) + j3 + 3
 = −2 + j3 + 3
 = 1 + j3

The solutions to the system are (x,y) = [j,(1 − j3)] and (x,y) = [−j,(1 + j3)].

 4.  After we plug in the values, let’s convert subtractions to negative additions to be sure we 
keep the signs in order. First, let’s check [j,(1 − j3)] in the original linear equation:

3x + y − 1 = 0
3j + (1 − j3) − 1 = 0

j3 + 1 + (−j3) + (−1) = 0
j3 + (−j3) + 1 + (−1) = 0

0 = 0

Next, let’s check [−j,(1 + j3)] in that equation:

3x + y − 1 = 0
3(−j) + (1 + j3) − 1 = 0
−j3 + 1 + j3 + (−1) = 0
−j3 + j3 + 1 + (−1) = 0

0 = 0



Next, let’s check [ j,(1 − j3)] in the original quadratic equation:

2x 2 − 3x − y + 3 = 0
2j 2 − 3j − (1 − j3) + 3 = 0

2 × (−1) + (−j3) + [−(1 − j3)] + 3 = 0
−2 + (−j3) + (−1) + j3 + 3 = 0
−j3 + j3 + (−2) + (−1) + 3 = 0

0 = 0 

Finally, let’s check [−j,(1 + j3)] in that equation:

2x 2 − 3x − y + 3 = 0
2(−j)2 − 3(−j) − (1 + j3) + 3 = 0

2 × (−1) + j3 + [−(1 + j3)] + 3 = 0
−2 + j3 + (−1) + (−j3) + 3 = 0

j3 + (−j3) + (−2) + (−1) + 3 = 0
0 = 0 

 5. Here are the two equations in their original forms:

x 2 + x − y = −1

and

x 2 − 2x − y = 2

We can morph these into functions of x, obtaining

y = x 2 + x + 1

and

y = x 2 − 2x − 2

When we mix the right sides of these equations, we obtain

x 2 + x + 1 = x 2 − 2x − 2

Adding the quantity (−x 2 + 2x + 2) to each side gives us

3x + 3 = 0

 which resolves to x = −1. That’s the only root of the equation we got by morphing and 
mixing. To obtain the y-value for the solution to the two-by-two system, we can plug the 
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x-value into either of the original quadratic functions. Let’s use the first one:

y = x 2 + x + 1
 = (−1)2 + (−1) + 1
 = 1 + (−1) + 1
 = 1

The system has the single solution (x,y) = (−1,1).

 6. First, let’s check (−1,1) in the first original quadratic:

x 2 + x − y = −1
(−1)2 + (−1) − 1 = −1

1 + (−1) − 1 = −1
0 − 1 = −1

−1 = −1

Next, let’s check (−1,1) in the second original quadratic:

x 2 − 2x − y = 2
(−1)2 − 2 × (−1) − 1 = 2

1 − (−2) − 1 = 2
1 + 2 − 1 = 2

3 − 1 = 2
2 = 2

 7. Here are the two equations in their original forms:

x 2 + y = 0

and

2x 3 − y = 0

We can morph these into functions of x, getting

y = −x 2

and

y = 2x 3

Mixing the right sides of these equations gives us

−x 2 = 2x 3



 Adding x 2 to each side and then transposing the left and right sides gives us a cubic equa-
tion in polynomial standard form:

2x 3+ x 2 = 0

 It’s tempting to divide this equation through by x 2. But if x = 0 happens to be a root, 
dividing through by x 2 will blind us to the existence of that root (and might cause other 
problems, too). We can use a two-step trick to avoid that trouble. First, let’s check to see 
if x = 0 is a root by plugging it in and doing the arithmetic. We get

2 × 03 + 02 = 0
0 + 0 = 0

0 = 0

 This cubic does have the root x = 0! Now that we’re aware of this fact, the second step in 
our trick is to see if the equation has any other roots. Let’s impose a temporary restric-
tion on x: It can have any value except 0. That makes it “legal” to divide through by x 2,
obtaining the equation

 (2x 3 + x 2) / x 2 = 0/x 2

We can rewrite this as

2x 3/x 2 + x 2/x 2 = 0

which simplifies to

2x + 1 = 0

 Subtracting 1 from each side and then dividing through by 2 tells us that x = −1/2. We 
can now remove the temporary restriction on the value of x, making sure we include the 
root x = 0. The cubic equation we got by morphing and mixing therefore has two roots:

x = 0  or  x = −1/2

 We can plug these into either of the original functions to get the y-values. Let’s use the 
second one. When x = 0, we have

y = 2x 3

 = 2 × 03

 = 2 × 0
 = 0
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When x = −1/2, we have

y = 2x 3

 = 2 × (−1/2)3

 = 2 × (−1/8)
 = −1/4

 The solutions to the system are (x,y) = (0,0) and (x,y) = (−1/2,−1/4). The solution (0,0) 
has multiplicity 2. Consider again the cubic that we got by mixing:

2x 3 + x 2 = 0

This factors into

(x)(x)(2x + 1) = 0

 The root x = 0 occurs once for each factor of x, or twice in total. That means the corre-
sponding solution (0,0) has multiplicity 2 in the two-by-two system.

 8. First, let’s check (0,0) in the original two-variable quadratic equation:

x 2 + y = 0
02 + 0 = 0
0 + 0 = 0

0 = 0

Next, let’s check (−1/2,−1/4) in that equation:

x 2 + y = 0
(−1/2)2 + (−1/4) = 0

1/4 + (−1/4) = 0
0 = 0

Next, let’s check (0,0) in the original two-variable cubic equation:

2x 3 − y = 0
2 × 03 − 0 = 0
2 × 0 − 0 = 0

0 − 0 = 0
0 = 0



Finally, let’s check (−1/2,−1/4) in that equation:

2x 3 − y = 0
2 × (−1/2)3 − (−1/4) = 0

2 × (−1/8) + 1/4 = 0
−1/4 + 1/4 = 0

0 = 0

 9. Here are the two equations in their original forms:

4x 3 + 2x 2 + 2x − 2y − 8 = 0

and

3x 3 − 2x 2 + 4x − y − 5 = 0

The first of these can be simplified if we divide through by 2. That gives us

2x 3 + x 2 + x − y − 4 = 0

We can morph this into a function of x by adding y to each side, getting

y = 2x 3 + x 2 + x − 4

 The second original equation can also be modified by adding y to each side, obtaining 
the function

y = 3x 3 − 2x 2 + 4x − 5

Mixing the right sides of these two cubic functions, we get

2x 3 + x 2 + x − 4 = 3x 3 − 2x 2 + 4x − 5

 Now let’s add the quantity (−2x 3 − x 2 − x + 4) to each side and then transpose the equa-
tion left-to-right. That gives us

x 3 − 3x 2 + 3x − 1 = 0

 The coefficients and constant in this equation show a certain symmetry. Whenever we see 
a pattern of this sort in a cubic or higher-degree equation, it suggests that the equation 
can be factored. After a few trials and errors, we discover that we have a binomial cubed:

(x − 1)3 = 0

Which can be written out fully as

(x − 1)(x − 1)(x − 1) = 0
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 This equation has the single root x = 1, which occurs with multiplicity 3. We can plug 
x = 1 into either of the original functions to get the y-value. Let’s use the first function. 
That gives us

y = 2x 3 + x 2 + x − 4
 = 2 × 13 + 12 + 1 − 4
 = 2 × 1 + 1 + 1 − 4
 = 2 + 1 + 1 − 4
 = 0

The solution to the system is therefore (x,y) = (1,0), with multiplicity 3.

 10. First, we check (1,0) in the first original two-variable cubic:

4x 3 + 2x 2 + 2x − 2y − 8 = 0
4 × 13 + 2 × 12 + 2 × 1 − 2 × 0 − 8 = 0

4 × 1 + 2 × 1 + 2 − 0 − 8 = 0
4 + 2 + 2 − 8 = 0

8 − 8 = 0
0 = 0

Next, we check (1,0) in the second original cubic:

3x 3 − 2x 2 + 4x − y − 5 = 0
3 × 13 − 2 × 12 + 4 × 1 − 0 − 5 = 0

3 × 1 − 2 × 1 + 4 − 5 = 0
3 − 2 + 4 − 5 = 0

1 + 4 − 5 = 0
5 − 5 = 0

0 = 0

Chapter 28
 1. See Table C-2, which shows selected values for the functions

y = −3x + 1

and

y = 2x 2 + 1

 Bold numerals indicate the real solutions we found when we worked out Prob. 1 in Chap. 27. 
The fractional values are also shown in decimal form so they’ll be easier to graph.

 2. See Fig. C-4. Each horizontal increment is 1/2 unit. Each vertical increment is 3 units.



 3. See Table C-3, which shows selected values for the functions

y = −3x + 1

and

y = 2x 2 − 3x + 3

 There are no real solutions to this system, as we discovered when we worked out Prob. 3 
in Chap. 27.

 4. See Fig. C-5. Each horizontal increment is 1 unit. Each vertical increment is 5 units.

 5. See Table C-4, which shows selected values for the functions

y = x 2 + x + 1

Table C-2. Solution to Prob. 1 in Chap. 28.

x −3x + 1 2x 2 + 1

−3 10 19
−2 7 9
−3/2 11/2  11/2
or −1.5 or 5.5 or 5.5
−1 4 3
−1/2 5/2 3/2
or −0.5 or 2.5 or 1.5
0 1 1
1 −2 3
2 −5 9

x

y

(–3/2,11/2)

(0,1)

Figure C-4  Illustration for the solution to Prob. 2 in 
Chap. 28.
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Figure C-5  Illustration for the solution 
to Prob. 4 in Chap. 28.

x

y

No real
solutions

Table C-3. Solution to Prob. 3 in Chap. 28.

x −3x + 1 2x2 − 3x + 3

−3 10 30
−2 7 17
−1 4 8
 0 1 3
 1 −2 2
 2 −5 5
 3 −8 12
 4 −11 23

Table C-4. Solution to Prob. 5 in Chap. 28.

x x 2 + x + 1 x2 − 2x − 2

−4 13 22
−3 7 13
−2 3 6
−1 1 1
 0 1 −2
 1 3 −3
 2 7 −2
 3 13 1
 4 21 6



and

y = x 2 − 2x − 2

 Bold numerals indicate the real solution we found when we worked out Prob. 5 in Chap. 27.

 6. See Fig. C-6. Each horizontal increment is 1 unit. Each vertical increment is 4 units.

 7. See Table C-5, which shows selected values for the functions

y = −x 2

and

y = 2x 3

 Bold numerals indicate the real solution we found when we worked out Prob. 7 in Chap. 27.

x

y

(–1,1)

Figure C-6  Illustration for the solution 
to Prob. 6 in Chap. 28.

Table C-5. Solution to Prob. 7 in Chap. 28.

x −x 2 2x3

−3 −9 −54
−2 −4 −16
−1 −1 −2
 0 0 0
 1 −1 2
 2 −4 16
 3 −9 54
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 8. See Fig. C-7. Each horizontal increment is 1/2 unit. Each vertical increment is 10 units.

 9. See Table C-6, which shows selected values for the functions

y = 2x 3 + x 2 + x − 4

and

y = 3x 3 − 2x 2 + 4x − 5

Bold numerals indicate the real solution we found when we worked out Prob. 9 in Chap. 27.

 10. See Fig. C-8. Each horizontal increment is 1 unit. Each vertical increment is 20 units.

x

y

(0,0)

Figure C-7  Illustration for the solution 
to Prob. 8 in Chap. 28.

Table C-6. Solution to Prob. 9 in Chap. 28.

x 2x 3 + x 2 + x − 4 3x 3 − 2x 2 + 4x − 5

−3 −52 −116
−2 −18 −45
−1 −6 −14
 0 −4 −5
 1 0 0
 2 18 19
 3 62 70
 4 144 171



Chapter 29

 1. We can use the property of common logarithms that converts a product into a sum:

log10 xy = log10 x + log10 y

 In this case, x = 2.3713018568 and y = 0.902780337. If we use the calculator found in 
the Windows computer operating system:

log10 (2.3713018568 × 0.902780337)
= log10 2.3713018568 + log10 0.902780337

≈ 0.37498684137 + (−0.0444179086)
≈ 0.37498684137 − 0.0444179086

≈ 0.3305689328

 This is the common logarithm of the product we wish to find. If we find the common 
antilogarithm of this, we’ll get the desired result. Inputting this to a calculator and then 
rounding to three decimal places:

antilog10 (0.3305689328) ≈ 2.141 
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(1,0)

Figure C-8  Illustration for the solution 
to Prob. 10 in Chap. 28.
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 2. We can use the property of natural logarithms that converts a product into a sum:

ln xy = ln x + ln y
In this case, x = 2.3713018568 and y = 0.902780337. Therefore: 

ln (2.3713018568 × 0.902780337)
= ln 2.3713018568 + ln 0.902780337
≈ 0.86343911100 + (−0.102276014)

≈ 0.86343911100 − 0.102276014
≈ 0.761163097

 This is the natural logarithm of the product we wish to find. If we find the natural 
antilogarithm of this, we’ll get the desired result. Inputting this to a calculator and then 
rounding to three decimal places:

antiln (0.761163097) ≈ 2.141

 3.  In this situation, Pout = 23.7 and Pin = 0.535. We can plug these numbers into the 
formula for gain G in decibels (dB), and then round off as follows:

G = 10 log10 (Pout/Pin)
 = 10 log10 (23.7 / 0.535)
 = 10 log10 44.299
 ≈ 10 × 1.6464
 ≈ 16.5 dB

 4.  In this situation, Pout = 19.3 and Pin = 23.7. We’re interested in the power gain of the 
speaker wire, not the power gain of the amplifier. We can plug these numbers into the 
formula for gain G in decibels, and then round off as follows:

G = 10 log10 (Pout/Pin)
 = 10 log10 (19.3 / 23.7)
 = 10 log10 (0.81435)
 ≈ 10 × (−0.089189)
 ≈ −0.892 dB

 5.  If a positive real number increases by a factor of exactly 10, then its common logarithm 
increases (it becomes more positive or less negative) by exactly 1.

 6.  Let x be the original number, and let y be the final number. We’re told that y = 10x.
Taking the common logarithm of each side of this equation gives us

log y = log10 (10x)



From the formula for the common logarithm of a product, we can rewrite this as

log10 y = log10 10 + log10 x

But log10 10 = 1. Therefore

log10 y = 1 + log10 x

 7.  If a positive real number decreases by a factor of exactly 100 (it becomes 1/100 as 
great), then its common logarithm decreases by exactly 2.

 8.  Let x be the original number, and let y be the final number. We are told that y = x/100.
Taking the common logarithm of each side of this equation gives us

log10 y = log10 (x/100)

From the formula for the common logarithm of a product, we can rewrite this as

log10 y = log10 x − log10 100

But log10 100 = 2. Therefore

log10 y = (log10 x) − 2 

 9.  If a positive real number decreases by a factor of 357, then its natural logarithm 
decreases by ln 357 or, approximately, 5.88.

 10.  Let x be the original number, and let y be the final number. We are told that y = x /357.
Taking the natural logarithm of each side of this equation gives us

ln y = ln (x/357)

From the formula for the natural logarithm of a ratio, we can rewrite this as

ln y = ln x − ln 357

Using a calculator and rounding to two decimal places, we get ln 357 ≈ 5.88, so

ln y ≈ (ln x) − 5.88
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APPENDIX

D

Answers to Final Exam 
Questions

     1. e      2. e      3. b      4. c      5. b 
     6. a      7. d      8. d      9. c    10. a 
   11. b    12. a    13. b    14. b    15. e 
   16. b    17. d    18. c    19. e    20. b 
   21. d    22. c    23. c    24. b    25. a 
   26. c    27. a    28. a    29. d    30. b 
   31. c    32. c    33. d    34. e    35. b 
   36. d    37. e    38. a    39. a    40. b 
   41. b    42. d    43. a    44. a    45. c 
   46. c    47. b    48. e    49. d    50. e 
   51. a    52. d    53. b    54. c    55. d 
   56. a    57. e    58. c    59. d    60. e 
   61. c    62. a    63. c    64. e    65. a 
   66. a    67. b    68. d    69. e    70. b 
   71. e    72. a    73. b    74. e    75. b 
   76. a    77. e    78. c    79. b    80. a 
   81. a    82. a    83. d    84. e    85. b 
   86. c    87. e    88. c    89. a    90. c 
   91. d    92. a    93. c    94. e    95. b 
   96. b    97. a    98. a    99. b  100. a 
 101. c 102. a 103. e 104. b 105. c 
 106. c 107. e 108. b 109. b 110. d 
 111. a 112. d 113. b 114. d 115. a 
 116. d 117. c 118. a 119. e 120. a 
 121. b 122. e 123. c 124. c 125. d 
 126. d 127. a 128. d 129. a 130. d 
 131. e 132. a 133. e 134. e 135. c 
 136. a 137. b 138. a 139. a 140. c 
 141. d 142. c 143. e 144. a 145. b 
 146. b 147. a 148. d 149. c 150. a 
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Symbol First use Meaning
 I Chapter 1 Roman numeral for 1
 V Chapter 1 Roman numeral for 5
 X Chapter 1 Roman numeral for 10
 L Chapter 1 Roman numeral for 50
 C Chapter 1 Roman numeral for 100
 D Chapter 1 Roman numeral for 500
 M Chapter 1 Roman numeral for 1,000
 K Chapter 1 Alternative Roman numeral for 1,000
 ∞ Chapter 1 Lemniscate symbol for infi nity
 ω Chapter 1 Lowercase Greek omega symbol for infi nity
 ℵ Chapter 1 Uppercase Hebrew aleph symbol for infi nity
 ℵ0 Chapter 1 Aleph-null, the number of whole numbers
 ... Chapter 1 Ellipsis, indicating repetition of a sequence or pattern
 = Chapter 1 Conventional symbol for numerical equality
 + Chapter 1 Conventional symbol for addition
 ∈ Chapter 2 Set symbol meaning “is an element of”
 ∉ Chapter 2 Set symbol meaning “is not an element of”
 { } Chapter 2 Braces for enclosing list of set elements
 ∅ Chapter 2 Symbol for the null (empty) set
 / Chapter 2 Conventional symbol for division, fraction, or ratio
 ⊆ Chapter 2 Set symbol meaning “is a subset of”
 ⊂ Chapter 2 Set symbol meaning “is a proper subset of”
 = Chapter 2 Set symbol meaning “is congruent to”
 ≡ Chapter 2 Alternative set symbol meaning “is congruent to”
 ∩ Chapter 2 Set symbol meaning “intersect”
 ∪ Chapter 2 Set symbol meaning “union”
 × Chapter 3 Conventional symbol for multiplication
 − Chapter 3 Conventional symbol for negative numerical value
 ( ) Chapter 4 Parentheses for grouping of quantities
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Special Characters in
Order of Appearance
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 Symbol First use Meaning
 | | Chapter 4 Symbol for absolute value (of quantity between bars)
 − Chapter 4 Conventional symbol for subtraction
 [ ] Chapter 4 Brackets for grouping of quantities
 · Chapter 5 Alternative symbol for multiplication
 ÷ Chapter 5 Alternative symbol for division
 ≠ Chapter 5 Symbol meaning “is not equal to”
 : Chapter 6 Symbol for a ratio or proportion
 > Chapter 6 Inequality symbol meaning “is strictly larger than”
 < Chapter 6 Inequality symbol meaning “is strictly smaller than”
 ≥ Chapter 6 Symbol meaning “is larger than or equal to”
 ≤ Chapter 6 Symbol meaning “is smaller than or equal to”
 { } Chapter 6 Braces for grouping of quantities
 . Chapter 7 Decimal point
 Σ Chapter 7 Uppercase Greek sigma symbol for sum
 ± Chapter 8 Plus-or-minus sign
 √ Chapter 8 Surd symbol for square root
 ⇒ Chapter 11 Symbol meaning “implies” or “if/then”
 ⇔ Chapter 11 Symbol meaning “if and only if ”
 Δ Chapter 15 Uppercase Greek delta symbol for difference
 f −1 Chapter 17 Notation for inverse of a function f
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A
absolute

maximum, 399–402, 404–407, 409, 
510–515

minimum, 398, 400–403, 407–408, 
410–411, 510–515

absolute value
definition of, 51–52
of complex number, 358–359
of imaginary number, 352–353
of integer, 150
orders of magnitude and, 98

addend, definition of, 57
addition

as displacement, 52–53
associative law for, 59–63, 134, 151–153
commutative law for, 57–59, 134, 151–152
method of solving linear system, 255–258, 

267–270, 329–330
of complex numbers, 357, 359–361
of exponents, 117–119
of fractions, 91–93, 158
of imaginary numbers, 353–354
signs in, 56

additive
identity element, 55, 133
inverse, 62, 133

aleph, as infinity symbol, 10, 129, 169
aleph-null, 129, 169

antecedent, definition of, 178
antilogarithm, 488
Arabic numeral, 8–10
arithmetic mean, 124
Arithmetic, Fundamental Theorem of, 45
associative law

for addition, 59–63, 134, 151–153
for multiplication, 75–78, 134, 155–157

average, 124
axis increments, 225–226

B
base

in numeration system, 11–17, 95, 143
of exponential, 487
of logarithm, 479–480

base-10
antilogarithm, 488
exponential, 487–488, 541–543
logarithm, 480, 538–540

base-e
antilogarithm, 488
exponential, 488, 541–543
logarithm, 480–481, 540–541

billion
definition of, 9
English, 143
U.S., 143
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bijection
definition of, 212–213
example of, 213–214, 316–317

binary numeral, 14–17, 143–144
binomial

complex number expressed as, 357
cubed form, 413–415
factor form, 367–371, 391–395, 415–419, 

435–437, 517
factor rule, 423, 518
to the nth form, 432–435, 519–520

binomial-trinomial form of cubic equation, 
419–424, 428

braces, grouping with, 93
brackets, grouping with, 61

C
calculus, differential, 410
cardinal, transfinite, 131
cardinality of set, 129, 169
Cartesian n-space, 292
Cartesian plane

assembly of, 223–225
function graphed in, 232–234
origin in, 223
quadrants of, 223–225, 317–318
relation graphed in, 226–231

Cartesian three-space, 290–292
Celsius temperature scale, 45
cipher, as numeral for zero, 100
co-domain of mapping, 209–211
coefficient

in quadratic equation, 367
leading, 443

coincident sets, 24–25
common

antilogarithm, 488
denominator, 91–92
exponential, 487–488, 541–543
factor, 87
logarithm, 480, 538–540
prime factor, 88

commutative law 
for addition, 57–59, 134, 151–152
improper use of, 77
for multiplication, 73–75, 134, 155–157

completing the square, 371–375
complex number

absolute value of, 358–359
addition, 357, 359–361
as root of quadratic equation, 381–395
conjugates, 358, 384–386, 391–395, 501
definition of, 355
division, 357–358
expressed as binomial, 357, 500–501
multiplication, 357
notation, 355–356
plane, 356–361
relationship to other numbers, 359
subtraction, 357

composite
number, definition of, 40–41
number, negative, 48–49

compound fraction, 90, 159
congruent sets, 24–25, 27, 30–31, 146
conjugates, complex, 358, 384–386, 

391–395, 501
consequent, definition of, 178
constant

in quadratic equation, 367
letter, 192–193

coordinates
Cartesian, 223–235
rectangular, 225, 233

corollary, definition of, 44
counterexample, 60
counting

methods, 3–18
number, 7, 9

credit, 58
cross-multiplication, 74
cube

geometric, 113–114
root, 113–114, 164

cubic/cubic system, 459–461
cubic equation

binomial-cubed form of, 413–415
binomial-factor form of, 415–419, 517
binomial-trinomial form of, 419–424, 428
polynomial standard form of, 422–430, 

515–516
real roots of, 420–421

curve fitting, 229
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D
debit, 58
decillion, definition of, 9
decimal

endless, 101–104, 121, 160–161
fraction, 95–108
nonterminating, 101–104, 160–161
numeral, 11–17, 143–144
point, 96–98
terminating, 99–101, 160–161
to ratio conversion, 104–107

denominator
common, 91–92
definition of, 84
zero as, 135

denumerable set, 129, 168
dependent variable, definition of, 215
Descartes, Rene, 223
diagonal form of matrix, 301–304, 341, 

343–344
difference vs. ratio, 482–483, 492
differential calculus, 410
digit, definition of, 3
discriminant, 378, 381–382, 504–506
disjoint sets, 25, 28, 31, 146
displacement

addition as, 52–53
definition of, 51
division as, 66–67
multiplication as, 65–66
subtraction as, 53–54

distributive laws, 78–80, 134–135, 156
dividend, definition of, 67
dividing through, 175–176
division

as displacement, 66–67
by zero, 67–68
notation for, 70
of complex numbers, 357–358
of fractions, 90–91, 159
signs in, 72
synthetic, 423–427

divisor, definition of, 67
domain

definition of, 208–209
of mapping, 208–211

double elimination, 255–258, 267–270, 285

E
echelon form of matrix, 301–303, 341–343
element of set, 19–21, 144
ellipsis, 148
empty set (see null set)
endless decimal

nonrepeating, 102–103, 160–161
repeating, 101–104, 160–161

equal sets, 24–25
equation

first degree, 192–207
higher-degree, 432–446
manipulating or morphing, 

68, 173–176
polynomial, 432–446
second-degree, 363

equivalence, logical, 179
equivalence relation, 180, 310
essential domain of mapping, 208–211
even number, definition of, 39
exponent

definition of, 44–45
reciprocal within, 484

exponential
base, 95, 487
base-10, 487–488, 541–543
base-e, 488, 541–543
common, 487–488, 541–543
constant, 192, 487
definition of, 487
vs. logarithm, 488–489
natural, 488, 541–543
in product, 494
in ratio, 494–495

exponents
addition of, 117–119
irrational-number, 139–140
multiplication of, 120–121
subtraction of, 118–119

extremum, 399–402
Euler’s constant, 479

F
factor

common, 87
imaginary numbers in, 387–391
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factor (Cont.)
of natural number, 39–42
of quadratic equation, 370, 387–395
prime, 40–42, 88, 148–150

factoring, 370
Fahrenheit temperature scale, 45
finite set, 20–21
first-degree equation

combinations of operations in, 198–208
constants in, 192–196
differences in, 192–196
in one variable, 192–207
number games involving, 206–207
products in, 196–198
ratios in, 196–198
standard form of, in one variable, 201, 313–314
sums in, 192–196
word problems involving, 203–207

formula, definition of, 92
fraction

as ratio of integers, 83–94
compound, 90, 159
decimal, 95–108, 161–162
improper, 84
lowest form of, 87–89, 157–159
proper, 84–86, 158
reducing, 87–89
simple, 84

fractions
addition of, 91–93, 158
division of, 90–91, 159
multiplication of, 89–90, 159
subtraction of, 91–93, 159

function
definition of, 218
examples of, 218–220
graphed in Cartesian plane, 232–234
notation, 399
vertical-line test for, 234, 396–397

Fundamental Theorem of Arithmetic, 45

G
grammar, mathematical, 56
graphs

Cartesian, 223–231
of quadratic functions, 396–412
of two-by-two linear systems, 264–280

grouping
with braces, 93
with brackets, 61
improper use of, 77
with parentheses, 56

H
hexadecimal numeral, 12–13, 16–17, 

143–144
higher-degree equation, 432–446
Hindu-Arabic numeral, 8–10
horizontal-line test for inverse function, 

234, 321
hypercube, 114

I
identity element

additive, 55, 133
multiplicative, 70–71, 133

if and only if statement, 179
iff statement, 179
if/then statement, 178–179
imaginary number

absolute value of, 352–353
addition, 353–354
definition of, 349–351
in factor of quadratic equation, 

387–391
line, 351–355
pure, 357
as root of quadratic equation, 382–385, 

387–391
subtraction, 354
unit, 350–351, 498–501

implication, logical, 178–179
improper fraction, 84
inconsistent linear system, 

275–277, 345
increment, in slope, 236
independent variable, definition of, 215
inequality

behavior of, 179–183, 308–310
definition of, 176
manipulation or morphing, 183–190
solving, 189–191
types of, 176–178
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infinite
ordinal, 37–38, 148
set, 20–21

infinity, 10, 37–38, 68, 
129–132, 148

inflection point, 474–476
injection

definition of, 211–212
example of, 213–214, 315–317

integer
absolute value of, 150
definition of, 45
generation of, 47–49
implied list of, 149
in hierarchy, 167–168
negative, 45–47
nonnegative, 51
powers, 109–112
root, 112–117
rules for squaring, 131–132

intercept, definition of, 238
intersection of sets, 27–30, 145–146
inverse

additive, 62, 133
function, horizontal-line test for, 234
logarithm, 488
multiplicative, 90, 110, 134
relation, 219–220, 273–275

irrational number
as exponent, 139–140
expression of, 124–125
in hierarchy, 167–168
impossibility of listing, 129–132
pi as example of, 103

irrational roots, 444

J
j operator, definition of, 350

L
law, mathematical, 60
leading coefficient, 443
lemma, definition of, 64
lemniscate, as infinity symbol, 10
letter constant, 192–193
linear/cubic system, 456–459, 471–475

linear equation
from graph, 244–249
graph of, 236–250
point-slope form of, 242–244, 324–325
slope-intercept form of, 236–242, 

323–326
two-point form of, 248–249

linear/quadratic system, 447–451, 463–466
linear relation

graph of, 236–250
linear system

general, 290–294
n-by-n, 292
three-by-three-281–289, 296–307
three-by-two, 293–294
two-by-two, 251–280, 326–331

local
maximum, 474–476
minimum, 474–476

logarithm
common, 480, 538–540
conversions, 484–485
base-e, 480–481, 540–541
base-10, 480, 538–540
base of, 479–480
definition of, 479
vs. exponential, 488–489
inverse, 488
natural, 480–481, 540–541

logical
equivalence, 179
implication, 178–179, 182–183

lower bound for real roots, 441–443
lowest form of fraction, 87–89, 100, 157–159

M
magnitude, order of, 95–99, 160, 162–163
many-to-one relation, 219
mapping

bijective, 212–214, 316–317
co-domain of, 209–211, 314–315
definition of, 208–209
domain of, 208–211, 314–315
maximal domain of, 209–211, 314–315
essential domain of, 208–211
injective, 211–214, 315–317
one-to-one, 212
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mapping (Cont.)
onto, 212
range of, 208–211, 314–315
surjective, 212, 315–317

mathematical
grammar, 56
law, 60

matrix
diagonal form of, 301–304, 341, 343–344
echelon form of, 301–303, 341–343
for solving linear systems, 296–307, 340–345
operations with, 298–300
unit diagonal form of, 300–301, 304–305, 

341, 344
maximal domain of mapping, 209–211
maximum

absolute, 399–402, 404–407, 409, 510–515
local, 474–476

member of set, 19–21, 144
million, definition of, 9
minimum

absolute, 398, 400–403, 407–408, 410–411, 
510–515

local, 474–476
minus sign

for negative number, 54
monomial, definition of, 363
morph and mix, 251–255, 264–267, 

286, 326–329
multiple powers, 119–122
multiplicand, definition of, 66
multiplication

as displacement, 65–66
associative law for, 75–78, 134, 155–157
by zero, 135
commutative law for, 73–75, 134, 155–157
notation for, 70
of complex numbers, 357
of exponents, 120–121
of fractions, 89–90, 159
signs in, 72

multiplicative
identity element, 70–71, 133
inverse, 90, 110

multiplicity of root, 372, 433–437, 459, 503–504
multiplier, definition of, 66
multiplying through, 174–175

Murphy’s law, 189
mutant quadratic, 364–367

N
natural

antilogarithm, 488
exponential, 488, 541–543
logarithm, 480–481, 540–541

natural number
definition of, 35
divisibility of, 43
factor of, 39–42
generation of, 35–38, 147–150
in hierarchy, 167–168

n-by-n linear system, 292
negative

changing reciprocal to, 484
integer power, 95, 163–164

negative number
definition of, 45–47
minus sign in, 54
subtraction of, 56–57

negative power, 138
nondenumerable set, 130–131, 168
nondisjoint sets, 26
nonillion, definition of, 9
nonterminating decimal

nonrepeating, 102–103, 160–161
repeating, 101–102, 160–161

n-space, Cartesian, 292
null set, 20, 27, 31, 35–36, 146
number

comparison with numeral, 142
composite, 40–41, 48–49
conversions, 104–107
even, 39
counting, 7
definition of, 3
games, 206–207
hierarchy, 124–129
integer, 45–49, 51, 109–117, 131–132, 

149–153, 167–168
irrational, 103, 124–125, 129–132, 167–168
natural, 35–45, 147–150, 167–168
negative, 45–47, 54, 56–57
odd, 39
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number (Cont.)
prime, 40–45, 48–49, 148–150
rational, 91 124–125, 129–130, 166–168
real, 125–126, 133–140, 167–168
whole, 9

numeral
Arabic, 8–10, 143
binary, 14–17, 143–144
comparison with number, 142
decimal, 11–17, 143–144
definition of, 3,
hexadecimal, 12–13, 16–17, 143–144
Hindu-Arabic, 8–10, 143
octal, 12–13, 143–144
Roman, 6–7, 11–12, 142
toothpick, 4–6

numeration systems, 11–17
numerator

definition of, 84
zero as, 135

O
octal numeral, 12–13, 16–17, 143–144
octillion, definition of, 9
odd number, definition of, 39
omega, as infinity symbol, 10
one-to-many relation, 219
one-to-one

correspondence, 24, 212
mapping, 212

onto mapping, 212
order of magnitude, 95–99, 160, 162–163
ordered

n-tuple, definition of, 293
pair, definition of, 209–210
triple, definition of, 290

ordinal
infinite, 37–38, 148
transfinite, 37–38, 148

origin, in Cartesian plane, 223
overlapping sets, 26, 28–29, 31–32

P
parabola, as graph, 396–412, 510–515
parallelogram, 359

parentheses
grouping with, 56
in simple products, 71
in simple quotients, 71

perfect square, 41, 149, 371–372, 374
pi, 103
plus-or-minus sign, use of, 116
point-slope form, 242–244, 324–325
polynomial

equation, 432–446
second-degree, 363–367
standard form, cubic, 422–430, 

515–516
standard form, higher-degree, 438, 519
standard form, quadratic, 364–367, 

501–502, 515
positive integer power, 95, 160
power

irrational-number, 139–140
negative, 138
negative integer, 95, 110–112, 

163–164
negative reciprocal, 116–117
of power, 493–494
positive integer, 95, 109–112, 160
vs. product, 493–494
rational-number, 120–122, 138
reciprocal-of-integer, 112–117
zeroth, 95, 110–112, 135, 160

powers
multiple, 119–122
rational number, 120–122

precedence, rules of, 71–72, 154
prime

factor, 40–42, 88, 148–150
number, definition of, 40–41, 148
number, largest, 43–45
number, negative, 48–49

product
definition of, 66
exponentials in, 494
vs. power, 483
vs. sum, 482

proper
fraction, 84–86, 158
subset, 24, 146–147

PS form (see point-slope form)
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pure
imaginary number, 357
real number, 357

Q
Q.E.D., definition of, 63
quadrants of Cartesian plane, 223–225, 317–318
quadratic

equation, binomial factor form, of 367–371, 
391–395

equation, mutant, 364–366
equation, polynomial standard form of, 

364–367, 501–502, 515
equation, with complex roots, 381–395
equation, with real roots, 363–380
formula, 375–377, 381–386, 391–392, 504
function, graph of, 396–412
function, with no real zeros, 407–412
function, with one real zero, 402–407
function, with two real zeros, 396–402

quadratic/quadratic system, 451–456, 466–471
quadrillion, definition of, 9
quintillion, definition of, 9
Quod erat demonstradum, 63
quotient, definition of, 67

R
radical notation, 113–115
radix, 11–17, 95
range of mapping, 208–211
ratio

as equivalent of fraction, 85–87
definition of, 67
vs. difference, 482–483, 492
exponentials in, 494–495
in exponent, 493
to decimal conversion, 104

rational number
density, 124–125, 166
definition of, 91
in hierarchy, 167–168
implied list of, 129–130
line, 124
powers, 120–122

rational root, 443–445, 522–523

real number
definition of, 124–125
in hierarchy, 167–168
line, 125
pure, 357

real root, 439–445, 516–519, 520–523
real variables, behavior of, 133–140
reciprocal

behavior of, 134
changing to negative, 484
definition of, 90
of integer, 90, 110
vs. negative exponent, 491–492
within exponent, 484

reciprocal-of-integer powers, 112–117
reductio ad absurdum, 44
redundant linear system, 277–278, 345
reflexive property, 179–180, 310
relation

bijective, 216
as set of ordered pairs, 215
definition of, 179
graphed in Cartesian plane, 226–231
injective, 215
inverse, 219–220, 229–231, 273–275, 

316, 320–321
many-to-one, 219
one-to-many, 219
surjective, 215–216

remainder
definition of, 67
in quotient of integers, 83

rename and replace, 258–262, 271–275, 
286, 330–331

rise over run, 237
Roman numeral, 6–7
root

cube, 113–114, 164
even, of negative number, 117, 165
integer, 112–117, 164
multiplicity of, 372, 433–437, 459, 

503–504
rational, 443–445, 522–523
real, 439–445, 516–519, 520–523
square, 112–113, 164–165

rotate-and-mirror method, 334–335
rounding error, 483, 485–486
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S
second-degree

equation, definition of, 363
polynomial, 363–367

set
concept of, 19–22
denumerable, 129, 168
element of, 19–21, 144
empty, 20
finite, 20–21
infinite, 20–21
member of, 19, 144
nondenumerable, 130–131, 168
null, 20, 27, 31
properties of, 144–147
universal, 23–24
within a set, 21

sets
coincident, 24–25, 146
congruent, 24–25, 27, 30–31, 146
disjoint, 25, 28, 31, 146
equal, 24–25
intersection of, 27–30, 145–146
nondisjoint, 26, 28
overlapping, 26, 28–29, 31–32
union of, 30–33, 145–146

sextillion, definition of, 9
SI form (see slope-intercept form)
sign

in division, 72
in multiplication, 72

sign-changing element, 71
significant figures, 100
simple fraction, 84
slope

definition of, 236–238
determination of, 321–323

slope-intercept form, 236–242, 
253, 323–326

solution set
definition of, 278
of quadratic equation, 369
of two-by-two linear system, 278

square
completing, 371–375
geometric, 112–113
perfect, 41, 149, 371–372, 374

square (Cont.)
root, 112–113, 164–165
unit, 127–128

squaring, definition of, 41
subset, 23–24, 146–147
substitution, in linear system, 258–262, 

271–275, 330–331
subtraction

as displacement, 53–54
of complex numbers, 357
of exponents, 118–119
of fractions, 91–93, 159
of imaginary numbers, 354
of negative number, 56–57
signs in, 56

sum vs. product, 482, 492
summation symbol, 99
surd symbol, 113
surjection

definition of, 212
example of, 315–317

symmetric property, 179–180, 310
synthetic division, 423–427

T
tangent to axis, 402
terminating decimal, 99–101, 

160–161
tesseract, 114
thousand, definition of, 9
three-by-three geometry, 290–292
three-by-three linear system

eliminating variables in, 281–285
equation form of, 296
matrices and, 296–307
matrix form of, 297–298, 340
inconsistent, 345
redundant, 345
solving, 281–289, 296–307, 

335–345
three-by-two linear system, 293–294
three-space, Cartesian, 290–292
toothpick numeral, 4–6
transfinite ordinal, 37–38, 148
transitive property, 179–180, 310
trillion, definition of, 9
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two-by-two cubic/cubic system, 459–461
two-by-two general system

graph of, 530–538
solution of, 523–530

two-by-two linear system
addition, 255–258, 267–270, 329–330
double elimination, 255–258, 267–270, 

285
graphs of, 264–280, 331–335
inconsistent, 275–277
morph and mix, 251–255, 264–267, 

286, 326–329
redundant, 277–278
rename and replace, 258–262, 271–275, 

286, 330–331
substitution, 258–262, 271–275, 

330–331
two-by-two linear/cubic system, 456–459, 

471–475
two-by-two linear/quadratic system, 447–451, 

463–466
two-by-two quadratic/quadratic system, 

451–456, 466–471
two-point form, 248–249

U
union of sets, 30–33, 145–146
unit diagonal form of matrix, 300–301, 

304–305, 341, 344
unit square, 127–128
universal

quantifier, 180
set, 23–24

universe, 23–24
upper bound for real roots, 440–443

V
variable

definition of, 52
dependent, 215
independent, 215

Venn diagram, 22–23
vertex of parabola, 510–515
vertical-line test for function, 234, 239, 319, 

396–397

W
whole number, 9
word problems, 203–207

X
x-intercept, 332–335

Y
y-intercept

definition of, 238
determination of, 321–323

Z
zero

as placeholder, 8–9, 143
denominator, 135
division by, 67–68
lack of, in Roman system, 6–7
multiplication by, 135
numerator, 135
of quadratic function, 396–412, 510–515

zeroth
power, 95, 110–112, 135, 160
root, 168
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